Contribution on Syntax and Semantics
Gerry Radack

2007-09-04
CMS N136
The following would go in Part 2.
3 Terms and definitions
master data message

message used to exchange master data between organizations
NOTE A master data message is represented as a sequence of bits. These bits are typically organized into higher-level structures, e.g., bytes, characters, data element values, segments, records, and files.
message class

class of master data messages that perform a similar role
The following would go in Part 110.
Annex B
Syntax and semantics

B.1 Structure of messages
Each message is fundamentally a sequence of bits. These bits are typically grouped into structures, which in turn are grouped into higher-level structures.
EXAMPLE 1 In computer-to-computer exchange of natural language text, bits are grouped into bytes, bytes are grouped into characters, characters are grouped into words, words are grouped into phrases, phrases are grouped into sentences, sentences are grouped into paragraphs. (see Figure 1).
[image: image1.emf]bit

byte

character

word

phrase

sentence

paragraph

Figure 1: Structure of natural language text, as represented in a computer
EXAMPLE 2 Figure 2 shows the structure used by EDIFACT.
[image: image2.emf]bit

byte

character

simple data element

composite data element

data segment

transaction set

functional group

Figure 2: Structure of EDIFACT message

EXAMPLE 3 Figure 3 shows the structure of a computer program in a typical computer programming language. Tokens include such things as reserved words, literals, operators, and punctuation (e.g., the semicolon that ends each statement in many programming languages).

[image: image3.emf]bit

byte

character

token

statement

program

Figure 3: Structure of computer program
EXAMPLE 4 Figure 4 shows the structure of an XML document.

[image: image4.emf]bit

byte

character

node

document

’
Figure 4: Structure of XML document

B.2 Syntax

The syntax of a message class is a set of rules that specify the allowable structure of a message belonging to the message class. If the message class has a higher-order structure, then the syntax also contains rules for generating the higher-order structure from the lower-order structure.
Syntax of computer programming languages and data languages is often specified using formal methods, e.g., variants of Backus-Naur Form (BNF) such as Augmented Backus-Naur Form (ABNF) [1] and Wirth Syntax Notation (WSN) [2].
NOTE Use of formal methods for specifying syntax is not a requirement of this part of ISO 8000.
EXAMPLE 1 In the case of XML documents, the syntax provides rules for creating nodes based on groups of characters, and for creating documents based on groups of nodes. The XML specification contains some syntax rules, e.g., that a document must be well-formed. Additional syntax rules can be given in an XML document type definition (DTD) or schema.
EXAMPLE 2 The following DTD fragment states that an element named “pv” must contain an element named “p” followed by an element named “v”. It does not give the meaning of those elements.
<!ELEMENT p (#PCDATA)>
<!ELEMENT pv (p, v)>
<!ELEMENT v (#PCDATA)>
The following is an example of an XML fragment conforming to this DTD fragment:

<pv>

<p>0161-1#02-123456#1</p>

<v>steel</v>
</pv>
B.3 ISO 10303 Architectural approach

In the ISO 10303 architecture, the specification of the syntax of a data file or message consists of two components: the information model and the implementation method.

A data model is a model that describes in an abstract way how data is represented in an information system or a database management system. Within the ISO 10303 architecture, the EXPRESS modeling language [3] is used to represent information models.

The following is an excerpt of an EXPRESS model of the data that describe a person.

ENTITY person;

 first_name: STRING;

 last_name: STRING;

 address: STRING;

END_ENTITY;

An “entity data type” specifies the representation of an entity. An entity data type establishes a domain of values defined by common attributes and constraints.

A piece of data that conforms to the entity data type is called an "instance" of the entity data type. For example, John Smith, whose address is 123 Main St, Anytown, USA, would be an instance of the person entity data type.
An EXPRESS data model defines data abstractly. It does not specify the syntax of a message containing instances of the entity data types in the data model. The definition of person, above, specifies that a person is represented by three attributes (first name, last name, and address), but does not specify how the attributes are delimited, how the attributes are separated, how to distinguish instances of different entity data types, and how to identify instances so that they can be referenced. This is all done through the implementation method.
The earliest implementation method to be developed was ISO 10303-21 [4]. ISO 10303-21 defines a physical file format for instances of EXPRESS data.

John Smith, whose address is 123 Main St, Anytown, USA, could be represented in an ISO 10303-21 physical file as:

#1 = person('John', 'Smith', '123 Main St, Anytown, USA 01234');

As can be seen, in an ISO 10303-21 file, each instance consists of the following components:

· pound sign followed by an integer. This is the internal identifier of the instance within the file;

· equal sign;

· name of entity data type;

· left parenthesis;

· attribute values, separated by commas;

· right parenthesis;

· semicolon.

Figure 5 shows how an EXPRESS data model is combined with an implementation method to specify the syntax for data.
[image: image5.emf]EXPRESS data model

ISO 10303-201

Exchange of

Explicit draughting

other data models

. . .

ISO 10303-203

Exchange of

3D mechanical design

. . .

Implementation method

ISO 10303-21

Clear text encoding

ISO 10303-22

Standard data

access interface

ISO 10303-28

XML representation

. . .

+ =

Syntax for

exchange of

master data

using clear

text encoding

. . .

Exchange of master data

. . .

Figure 5: Combining EXPRESS data model with implementation method to specify syntax

Figure 6 shows the structure of an ISO 10303-21 exchange file.

[image: image6.emf]bit

byte

character

token

entity instance

data section header section

exchange file

…

Figure 6: Structure of ISO 10303-21 exchange file

EXAMPLE The following EXPRESS entity declaration states that an entity named “pv” must contain an element named “p” followed by an element named “v”. It does not give the meaning of those elements.

ENTITY pv;

 p: STRING;

 v: STRING;

END_ENTITY;

The following is an example of instance of the above entity data type in a ISO 10303-21 file. This is the same value as given in example 2 of B.2.

#2 = pv('0161-1#02-123456#1', 'steel');

B.4 Semantics

The semantics of a message class is a set of rules that assigns a meaning to each member of a message class.
There are formal systems for defining semantics, but for most practical applications, the semantics of a message are defined informally through human-readable text.

EXAMPLE For example 2 in B.2, the semantics might consist of the following human-readable statements:
Element “pv” represents the assignment of a value to a property.

Element “p” contains the identifier of the property in a concept dictionary.

Element “v” contains the value of the property.

Thus, the XML fragment:

<pv>

<p>0161-1#02-123456#1</p>

<v>steel</v>
</pv>
has meaning:

Property with id 0161-1#02-123456#1 has value “steel”.

In a certain concept dictionary, 0161-1#02-123456#1 is the identifier for the “material” property. Thus, the meaning of the above fragment is:

Material is steel.

Bibliography

[1] Augmented BNF for Syntax Specifications: ABNF, RFC 4232, Networking Group, 2005, ftp://ftp.rfc-editor.org/in-notes/rfc4234.txt.

[2] WIRTH, N. What can we do about the unnecessary diversity of notation for syntactic definitions?, Communications of the ACM, November 1977, vol. 20, no. 11, p. 822.

[3] ISO 10303-11, Industrial automation systems and integration — Product data representation and exchange — Part 11: Description methods: The EXPRESS language reference manual
[4] ISO 10303-21, Industrial automation systems and integration — Product data representation and exchange — Part 21: Implementation methods: Clear text encoding of the exchange structure

