Template for comments and secretariat observations
Date:
Document: ISO/

1
2
3
4
5
6
7

MB1

Clause/
Subclause/
Annex/Figure/Table
(e.g. 3.1, Table 2)
Paragraph/
List item/
Note/
(e.g. Note 2)
Type of com-ment2
Comment (justification for change)
Proposed change
Secretariat observations
on each comment submitted

Template for comments and secretariat observations
Date:
Document:

1
2
(3)
4
5
(6)
(7)

MB1

Clause No./
Subclause No./
Annex
(e.g. 3.1)
Paragraph/
Figure/Table/Note
(e.g. Table 1)
Type of com-ment2
Comment (justification for change) by the MB
Proposed change by the MB
Secretariat observations
on each comment submitted

GENERAL COMMENTS

US-3
All

te
Part 28 Edition 2 is the latest in a series of Wg11 standards to adopt the goal of maximizing the transfer of EXPRESS semantics to a target language. Like its predecessors (SDAI C++ Part 25, SDAI IDL Part 26 and SDAI JavaPart 29) it will be considered to be un-implementable by the vendors, because it is too difficult for programmer s and users to understand the semantics of EXPRESS, the target language and their relationship.

This CD draft is already 235 pages long. In contrast the IS of Edition 1 of Part 21 was 55 pages in length and the IS of Edition 2 was 70 pages. Each additional page of documentation increases the cost of implementation and conformance checking.

As an example in Part 21 the representation of aggregates is described in only 3 pages because only the structural representation of aggregates is described. In Part 28 there is a 20 page section dedicated to aggregates and several other sections also discuss the topic.

The size of Part 28 Edition 2 results from attempting to satisfy multiple usage objectives simultaneously. Two general features:

- massive configurability of the XML schema,

· maximizing the capture of EXPRESS semantics in the XML schema,

are important to satisfying other usage objectives, but they sacrificethe simplicity needed to satisfy the objective of wide implementation.
A much simpler mapping to XML and XML schema must be standardized, if extensive implementation of SC4 standards is a goal.
There should be a clear delineation between the two usage objectives desribed in the justification for the comment.

Two possible approaches to this delineation are dividing Part 28 into multiple parts, or the creation of conformance classes.

Irrespective of the approach chosen the technical objective is to have clear guidance for providing both a simplified binding and a more flexible binding capable of type checking per EXPRESS semantics.

The simplified binding should not support numerous XML configurations. And it should adopt a more sensible and restrained approach to the transfer of EXPRESS semantics. Accept that not all of the semantics can be translated without making the document unintelligible. Pick the features that are absolutely required, and additional features that can be translated most easily and clearly and define their transfer in the simple binding.

The richer binding should correspond to the capabilities in the Part 28 CD ballot document.

If the selected approach is to develop separate parts, then the current Part 28 may serve as the basis of the type checking binding. The simple binding should use Part 21 as a model, with the addition of a mapping to XML Schema.

If the selected approach is to use conformation classes, Part 28 must specify a conformance class that permits a pre-processor or a post-processor to conform by supporting only the default mapping, and providing no support for configuration directives.

Modify clause 4 to create conformance classes. Specify in clause 4.2 that a pre-processor conforms to class 1 if it can generate XML conforming to the default derived XML schema, and to class 2 if it can generate XML conforming to any configured derived XML schema. Similarly for clause 4.3 and 4.4.

The current default mapping, however, may still be too complicated. Features like attribute redeclaration, abstract types, and referential integrity checks should not be part of the default mapping, or should at least be optional.

Also, the behavior of the default mapping is extremely difficult to extract from the existing text, because much of it is controlled by what configuration directives apply, and the default values that apply are specified elsewhere.

An informative Annex that describes the default mapping, with examples, and with pointers into the normative text where needed, is also needed if this solution is chosen. (See also UK-7, JP1, JP2)
There will be a new Clause X to define the default binding which will have no configuration options. Users who are not interested in using configurations only need to reference Clause X.

Clause 6 will remain as it is (with some possible exceptions based on other ballot comments) and demonstrate the use of configuration options. Users interested in specific configured bindings to XML Schema will use Clause 6 and ignore Clause X. Clause 6 used with no configuration options will produce the XML Schema resulting from the default binding (Clause X).

There will be a separate conformance class that turns on validation. Without this conformance class, the default binding will not have validation capabilities. The conformance class WITHOUT validation is the basis for configured bindings; validation must be turned on with a configuration option. Modify Clause 4 to discuss the 2+ conformance classes.

In all of the subclauses of 6.6.4, in the definition of abstract, remove the exception.
Instead of an informative Annex, Clause X will be provided. (See DE-18).

US-5
All

te
A simple mapping of EXPRESS instance data to an XML file is needed to XML-ize AP-based data exchange. This mapping should be as simple as, or simpler than, the current Part 21. An XML schema that captures all the semantics of an EXPRESS schema is not practical, nor is it necessary for system-to-system data exchange, as contemplated by STEP APs. We know that EXPRESS has constructs not in other schema languages – that is why we use it. A simple exchange format, on the line of Part 21, would be useful, even without the schema.
Use Part 21 as a model for the AP binding. The document should be as short as Part 21. The binding should map EXPRESS entity names to XML element names, not use generic element names.

If there is a business need for other bindings, create separate documents for them to avoid confusing and/or scaring off implementers.
If a model for the AP binding is desired, a separate external document could be developed based on the Part 28 document. The delta between what is in the current Part 28 draft and the desired AP binding have not been sufficiently identified. P28 will take no action.

UK-1
10303-28
Annex D

Major Technical
The XML Schema resulting from Part 28 should not require the Base or Configuration XSDs when used in implementations.
Specify that the capabilities added by importing the Base and Configuration XSDs may be added directly to the resulting XSD.
Separate the document schema from the things that are needed in the uos. This will be the default base. The configuration xsd will not be required for import in the default binding.

These things need to be in a separate document (as opposed to being embedded in the generated schema) to preserve a single point of definition. Objects in the base schema require complete documentation.

Configuration directives can be used to embed these elements in the resulting schema.

UK-2

Annex D

Major Technical
Many of the capabilities specified in the Base XSD are not required in all usages of Part 28.
Make the capabilities defined by the Base XSD optional or conformance classes.
In describing the configuration option defined above, there needs to be text about not including data types unless they are required by another configuration directive.

UK-6
10303-28
General

Major Technical
Simplify the resulting XML Schema with respect to key/keyrefs.
Make the inclusion of the key/keyrefs optional or a conformance class.

(See also US-18)
Addressed by conformance class (see US-3)

UK-7
10303-28
General

Major Technical
The mixing of the configuration directives into the core definition of the binding to XML Schema makes the document much harder to follow.
Clearly define the default binding separately from defining the possible configurations that affect that binding. (See also US-3)
(see US-3)

UK-13
10303-28
7.2.4.3
2nd paragraph
Minor Technical
If the separate Base schema is no longer required, this paragraph should be deleted.
Delete paragraph if requirement dropped.
Modify the text of paragraph 2 to say that if the base schema remains external, this is required.

UK-16
10303-28
General

Major Technical
Many implementers have found the Part 28 Edition 1 late binding useful and complained about Edition 2 not including it. The relationship between the Edition 1 early bindings and the late binding has not been mentioned.
Consider adding a simple XML Schema late binding to Part 28 Edition 2.
Propose to SC4 that this document augments rather than replaces edition 1. Edition 1 late binding will then still stand. Change the words in the introduction to reflect the augmentation.

UK-18
10303-28
General

Major Technical
The default binding is very hard to identify in the document due to all the impacts of the configuration language.
Define the default binding in separate clauses. (See UK-7)
Resolved (see US-3)

SE
10303-28

ge
The compromise of having a partial validation using XML Schema (reduces cost of application implementation, although more complex and expensive EXP->XSD), seem to be ok. Technical experiences may say that the level of complexity in the resulting XML Schema should be lowered somewhat, or even corrected.

(see US-3) Resolved per conformance class.

JP1

FT
10303-0028 ed2

ge
Usage scenario of ed2 is not clear.

There are several different types of targets, e.g.

people of non-STEP community or within STEP community.
It is recommended to classify target people and clarify each usage scenario. (see also US-3)
(see also US-3)
In the introduction, or in an additional ANNEX that serves as a usage guide, we need to specify which Clause specific users will want to reference.

JP2

FT
10303-0028 ed2

ge
The current mapping specification is too difficult for people of a variety of domain to understand.
It is desirable to define a basic simple mapping specification at first, and then extend it depending on various usage scenarios as separate conformance classes. (see also US-3)
(see also US-3)

SIMPLE BINDING

US-2
ANNEX D and Document

ge
'ex' is a common namespace prefix used for examples. Consider changing this to 'exp' or 'p28'.

Change all occurrences to 'ex' to 'exp'.

US-14
6.1, 6.6

te
The set of declarations in 6.6 does not support UNIQUE rules, even though XML schema has such declarations. These are much more useful than XML IDs when mapping to database implementations.
Add text to 6.6 to map EXPRESS UNIQUE rules to xs:unique rules.
This issue belongs in the validation conformance class. Define this in Clause 6 with validation. EJB will make text.

US-15
6.5 and 6.6
block
te
Why does Part 28 contain "block" specifiers? Whether the derived XML schema can be meaningfully extended goes well beyond the scope of Part 28 and depends on a number of factors, only some of which can be interpreted as restrictions on XML schema extension or restriction.

And clause 4 defines a conforming document as one that validates under the derived schema, not some further derivative of it.

Moreover, XML schema block specifiers may actually interfere with the reuse of XML schemas corresponding to SC4 "modules".
Delete all the XML schema "block" specifications from Part 28.
We use block on elements, which is required to block the use of xsi:type. This requires the element tag to reflect the exact data type. This comment confuses 'block' with 'final'.

Required change- only set block='#all' for non-entity instance elements. For all entity instance elements, change block to 'extension restriction'.

US-20
6.3.2.2, 6.3.2.4.1, 6.3.2.8.2, 6.5.1.1.1, 6.5.2.2

te
Using xs:sequence means multiple element types cannot be accommodated in a collection.
Change xs:sequence to xs:choice.
Leave xs:sequence as is. In 6.3.2.6, xs:sequence is required around the xs:group.

US-21
6.3.2.5

te
This section should look like 6.3.2.3. It is missing base="ex:anyList", a number of attributes, and an exception.
Add base to the restriction, add the attributes from 6.3.2.3, and include the exception for accessor attributes.
Agreed. Make the proposed changes.

US-24
6.9

te
There is currently a list of elements generated for ex:uos. ex:uos should only include ex:entity.

"The context specific complexType uos shall restrict" … in this paragraph, strike the first three bullets. This shall restrict ex:Entity, ex:edokey, and referencable instance elements corresponding to non-entity data types. Change the contents of the xs:choice in the complexType below to reflect this.

TYPE SAFETY BINDING

US-18
Document

te
There is only one reason to construct an XML schema from an EXPRESS model, and that is to provide constraint checking. The XML schema lets us use widely available (vs EXPRESS specific)

software as data-driven (xsd) applications for this purpose. It does not do any good to know that some subset of the precondition is true. It may actually be worse to have a tool that partially checks constraints than to have no tool at all -- because of the false sense of security it provides. The logical conclusion of the partial type validation approach would be to devise a document along the lines of Part 28 ed.1 which described in words how the mapping of EXPRESS-defined data to XML should be accomplished. It was an adequate specification of an XML data mapping, but in the end it produced no automated means to check the constraints.
Make sure Part 28 has and maintains at least one configuration with full type constraint checking capability.

(see also UK-6)
Resolved with conformance classes (see US-3)

US-22
6.4.4.4, 6.5.6.1, 6.5.6.3, 6.6.8.1, 6.6.8.2, 6.7.4.4, etc.

te
In all of these sections where 'schema___' is part of the key name, 'schema' is specified as the name in 6.2.2, which does not dictate case. Should the schema in the keyname be consistently capitalized?
Provide direction for the case convention of 'schema___' (if relevant).
Non-issue. Schema___ is always capitalized per 6.2.2.

CONFIGURATION LANGUAGE

US-6
8.2.6, 8.5.6 (and 6.3.2 and 7.8)

te
The sparse directive determines only whether subscripts should be provided on array values. This is only useful for ARRAY OF OPTIONAL, and otherwise merely makes the XML clumsier.

Sparse should apply only to ARRAY OF OPTIONAL. Moreover, one of sparse="true" and sparse="false" should be the only encoding of ARRAY OF OPTIONAL, and the configuration language element should be deleted.
Delete clauses 8.2.6 and 8.5.6.

Modify 6.3.2 and 7.8 to specify the indexed sequence structure for all ARRAY OF OPTIONAL data types, and delete all references to sparse.
Sparse will only apply to ARRAY OF OPTIONAL, and always applies to ARRAY OF OPTIONAL. Sparse is no longer a configuration option.

US-7
8.2.7, 8.5.7

te
The tagless directive provides a useful feature, but it should always apply to aggregates of simple data types and no others.

The standard can be greatly simplified by eliminating the "configuration" of tagless.
Delete clauses 8.2.7 and 8.5.7.

Modify 6.3.2 and 7.8 to require all aggregates, except for ARRAY OF OPTIONAL, of Boolean, Integer, Logical, Number, Real, and types mapped to XML data types that contain no spaces, to behave like tagless="true" (the default).

Modify 6.3.2.4 and 7.8.5 to require all ARRAY OF ARRAY whose base-type is any of the above to behave like tagless="true".

Modify 6.3.2 and 7.8 to require all other cases to behave like tagless="false". This will delete 6.3.2.8.1 and probably eliminate the need for the tables in 6.3.2 and 7.8.

Delete all references to "tagless".
COMMENT WITHDRAWN.

US-8
8.2.8, 8.5.5

te
The flatten directive provides a useful feature, but it should always apply to all ARRAY OF ARRAY structures, and no others.
Delete clauses 8.2.8 and 8.5.5.

Modify 6.3.2.4 and 7.8.5 to require all ARRAY OF ARRAY structures to behave like flatten="true" and all other nested aggregates to behave like flatten="false". Delete all references to "flatten".
Delete the flatten configuration option. ARRAY OF ARRAY structures will always be treated as flatten="true". All other structures treated as flatten="false".

US-9
6.3.x, 6.5.3, Annex D

(relates to EJB-1, -2, -3 above)

te
If all of the above changes EJB-1, -2, -3) (US-6, -7, -8) are agreed to, the suffix "-wrapper" is no longer needed to distinguish representations of aggregates. Every aggregate value has only one possible representation, and ARRAY OF OPTIONAL base-type is the only exception.
Delete the suffix "–wrapper" in all occurrences in Annex D, and in the corresponding text of 6.3 and 6.5.1.6.2.

Delete the suffix "-wrapper" in 6.5.3.

In 6.5.2.2, in the element-name bullet, replace the text beginning "Exception" with:

"Exception: When the EXPRESS aggregation data type is an ARRAY OF OPTIONAL, the element-name shall have the form Seq-optional-base, where base is as specified above."
Does not apply because comment US-7 was withdrawn.

US-10
8.3.1, 8.3.3, 8.5.1.3
exp-attribute
te
The handling of the default for exp-attribute is not uniform. ex:option specifies default="double-tag", ex:entity specifies use="optional". Neither is correct.

And 8.5.1.3 effectively says that exp-attribute="attribute-tag" can only apply to entity-valued attributes.

The intended behavior is that exp-attribute defaults to double-tag for SELECT and entity data types and to attribute-tag for all others.
Modify the XML schema snippet in 8.3.1 and Annex C to make exp-attribute default="unspecified".

Modify the XML schema snippet in 8.3.3 and Annex C to make exp-attribute default="unspecified".

Modify 8.5.1.3 first sentence to read:

"An exp-attribute="attribute-tag" directive applies to a given EXPRESS attribute if the data type of the attribute is neither an entity data type nor a SELECT data type, and no exp-attribute directive is explicitly given for the attribute.

An exp-attribute="attribute-tag" applies to an EXPRESS attribute, even if the data type of the attribute is an entity instance, when any of the following is true:"
These sections are inconsistent with 8.2.5. Make the recommended changes as specified in 8.2.5. (editorial)

US-11
8.3.1, 8.3.3, 8.5.1.1, 8.5.1.3 and 8.5.1.4.
exp-attribute
te
Part 28 should specify one XML approach to representing EXPRESS attributes. This simplifies the specification and improves interoperability. Only one approach works in all cases -- use XML elements with context naming. That approach is used in OAGIS, in HR-XML, in EDI-XML and in all e-commerce and e-business XML schemas to date. Therefore SC4 should use that approach to maximize the use of SC4 schemas in e-commerce and e-business.

The use of XML attributes for "attribute" information is characteristic of more technical standards, with a clear intent to use special interpreter libraries, which should not be the norm for programmers working with SC4 data sets. General use of exp-attribute="attribute-content" is not necessary and not useful.

The distinction between "attribute-tag" and "double-tag" is primarily a distinction between handling of entity types and non-entity types, and attribute-tag should only apply to entity data types on an attribute-specific basis. There is no need for "double-tag" to apply to anything except entity and SELECT data types.

Exp-attribute is, however, useful as a "schema modification directive", as the values type-tag, no-tag and entity-tag indicate. The same applies to attribute-content (separating data from metadata) and to the use of attribute-tagged entities. So it should be so handled in Clause 8, by making it an attribute-specific option.
Modify the XML schema snippet in 8.3.1 and Annex C to delete exp-attribute from the list of XML attributes on ex:option.

Modify the XML schema snippet in 8.3.3 and Annex C to delete exp-attribute from the list of XML attributes on ex:entity.

Modify 8.5.1.1, 8.5.1.3 and 8.5.1.4 accordingly (the global option and the entity scope option are not possible).
Separate attribute tag concerns in the configuration language. Provide switches on ex:option (global level) to have different names (instead of exp-attribute) which correspond to attribute-content, and to double-tag and attribute-tag for both entity and non-entity.

No-tag and type-tag will not apply at the option level at all.

US-17
Clause 8 (Configuration Language) and Document

te
There are two kinds of configurability in Part 28: configurability of the instance encoding and configurability of the schema itself. People have advocated for reducing the configurability of Part 28 while each has espoused his own favorite encoding.
Focus on getting as broad a consensus as possible on the default configuration and continue to honor the other configurations that have been identified as being useful to one or more of the parties that contributed requirements to the document.
AGREED. (US-3)

US-19
6.3.2

te
A naming conflict arises where we end up with the same name for 2 collections that may have different encodings. For example, if an entity has attribute A and attribute B, and both attributes are type LIST OF C, but one of the attributes is tagless, we only generate one name for that collection but require different structures.
Modify the name based on whether its encoding requires list form or array form.
In 6.3.2.4, in the first paragraph after NOTE 3, insert the following in the beginning:

"If the deepest base type is the base type of the primary data type, and the deepest base type is an aggregate, the sequence-of-rows form specified in 6.3.2.4.1 shall be used. Otherwise …"

US-23
6.6.6

te
In 6.6.6 the exception in the first paragraph no longer belongs. There is no discussion of groups for inheritance mapping, which may be required if there is multiple inheritance. This would effect section 6.3.2.8.2. Also, in 6.3.2.8.2, instead of choosing between a group and an element, we should always create a group and use it in this section.
Delete the exception in 6.6.6. Discuss groups for inheritance mapping. In section 6.3.2.8.2, always create a group and use that instead of deciding between group and element.
Remove the exception in paragraph 1. Discuss groups for inheritance mapping. In section 6.3.2.8.2, always create a group and use that instead of deciding between group and element. ALSO- add proxies to the group (talk to Ed). (See DE-19) Need ppt on inheritance in 6.6

NO 1
10303-28
8.1
te
The configuration language does currently not allow for aliases of a targetNamespace name. Such aliases are needed for pre-fixing names in a name space.
Add an alias-concept for the names of name spaces.
In 6.8.2, change ' shall contain namespace declarations' to ' shall contain namespace (xmlns) declarations'.
Add a configuration option to specify what namespace prefix to use.

NO 2
10303-28
8.1
te
A reference mechanism seems to be missing from the configuration language to link a name space to an XML schema.
Add a reference mechanism from a name space to the XML schema that it is valid for.
(See NO-1)

NO 3
10303-28
8.2.15
te
A more comfortable mechanism for assigning configurations to Express constructs (both attributes and entities) is requested.
Allow regular expressions for the values of “select” and “name” attributes.

Enable expressions that involve combinations of “select” and “name” (if select = ... AND name = ... THEN).

Add an “include/exclude” capability to further constrain the set of “select”ed Express constructs.
1- Details have not been provided sufficient. NO does not propose text, or offer guidance for what the regular expression concept should include. No action can be taken without further clarification.

2- See comment above.

3- This may be resolved as specified for DE-5. Again further clarification would be required to make that determination.

DE-2

5.6 The uos element

te
Situation:

Currently it is not possible to define a default-language for a unit-of-serialization.

Proposal:

The uos-element should optionally allow for specification of a default language to be used for a schema instance .

Benefit:

This would free any instance element from the burden to specify its default language. Which therefore in most cases will lead to a reduction in size.
add the following to the definition of <uos>:

<xs:complexType name=uos">

...

<xs:attribute name="defaultLanguage" type="xml:lang" use="optional"/>

</xs:complexType>

The following description is proposed:

"The value of defaultLanguage specifies the language used as default according to ISO-639 and ISO-3166. Any instance element is free to overwrite this information by specifying its own language information. If the attribute is not present it is up to the specific implementation of pre- and post–processor to make assumptions about the language to use."
In 5.6, add the 'defaultLanguage' attribute and the propopsed description text. Type is incorrect- should be xs:language.

DE-3

8.2.12 naming-convention
note 1
te
Situation:

The current described functionality is not sufficient in terms of user-friendliness. (In principle the "preserve_case" could be used, but since it would affect all instances, the user would have to control all names instead of only one or a few)

Proposal:

Allow for an Escape-character to prevent the name mapping to happen on single selected instances.

The proposed escape character is "\" (back-slash)

Benefit:

Setup, maintenance and size of a configuration file will be reduced signicant.
Add a new Note:

"In cases where the chosen naming convention leads to conflicts with xml or application wise is not acceptable, the escape-character "\" (back-slash) applied in the name attribute of type, entity, attribute, inverse provides a possibility to circumvent the chosen default name mangling."

Chapter 8.3.2…8.3.6 the paragraph of the name-attribute should be updated as well like the following:

"If the user given name is prefixed with '\' (back-slash) it is used as given without applying the chosen naming-convention. It is the obligation of the user to check for any conflicts occurring by this … "

The 'name' configuration option already does this (8.2.1, 6.2.2). Add a note to 8.2.1 that 'name' is verbatim and overrides any specified naming-convention.

DE-4

8.3.1 Option
para 2

new 8.2.15++
te
Situation:

Currently for simple data types exactly one default mapping is implemented which is not modifiable. This mapping is seldom usable without any overwrite at <type>, <attribute> or <inverse> level. For large models, like AP214, a work intensive and error prune task. Therefore:

Proposal:

Add a new global option which defines the default mapping of the five simple data types BINARY, INTEGER, NUMBER, REAL and STRING.

The default mapping of simple data types will be applied to the whole model as long as it is not overwritten through a local map-directive in <type>, <attribute> or <inverse>.

Benefit:

Setup, maintenance and size of a configuration file will be reduced significant.
add the following to the definition of <option> :

<xs:complexType name=option">

...

<xs:attribute name="default-map" type="xs:string" use="optional"/>

</xs:complexType>

the value of "default-map" will have the following structure:

BINARY=(xs:hexBinary |xs:base64Binary); INTEGER=(xs:integer | xs:decimal | xs:long | xs:int | xs:short | xs:bytw | xs:unsignedLong | xs:nonNegativeInteger | xs:nonPositiveInteger | xs:positiveInteger | xs:negativeInteger | xs:year); NUMBER=(xs:double | xs:decimal | xs:float); REAL=(xs:double | xs:decimal | xs:float); STRING=(xs:normalizedString | xs:string | xs:language | xs:Name | xs:Qname | xs:NMTOKEN | xs:anyURI | xs:NOTATION)

Example:

<option default‑map="BINARY=xs:hexBinary;INTEGER=xs:integer;NUMBER=xs:double;REAL=xs:double;STRING=xs:string" />

Additional Notes:

1) In case the optional attribute is not set, the mapping applied is defined by chapter 6.3.1. This is equivalent to the following option:

<option default‑map ="BINARY=ex:hexBinary;INTEGER=xs:long;NUMBER=xs:decimal;REAL=xs:double;STRING=xs:normalizedString"

2) it is allowed to define the default mapping only partial. The non-specified parts are handled as described in chapter 6.3.1
The requirement is supported by current text (see 8.2.11 and 8.3.2).

DE-5

8.3.2 Type element

8.3.3 Entity element

8.3.4 attribute element
para 2

para 2

para 2
te
Situation:

By deriving XML-schemata from approved APs, it is not always desirable to translate the whole AP into an XML-Schema. Reasons for this could be:

· Support of special conformance class needed only

· [TODO]

Today it is not possible to exempt selected EXPRESS-entities, -types, -attributes from this translation.

Proposal:

Add a new attribute to the elements <type>, <entity>, <attribute> called "drop". This new attribute will exempt the marked EXPRESS-element from the translation into XML-Schema

Benefit:

· The XML-Schema generated from APs are not overloaded by never-used elements.

· By this also a stricter validation is possible.

· [TODO]
add the following to the definition of <entity>, <type>, <attribute>:

<xs:complexType name=…">

...

<xs:attribute name="drop" type="xs:boolean" default="false" use="optional"/>

</xs:complexType>

Additional Notes:

1) The case that the attribute "drop" is set to FALSE is equivalent to the absence of the attribute. In this case the marked EXPRESS-element will be included in the translation process

2) If the attribute "drop" ist set to TRUE, the marked EXPRESS-element will be excluded from the translation process and will therefore not be part of the generated XML-Schema.

(see NO-3, part 3) Add this new option to be used on entity, attribute and type. This is the same as our current keep option, so it should also apply to these scoping elements.

DE-6

8.2.11 Map

8.3.4 Attribute Element

8.3.5 Inverse Element
para 2

para 2
te
Situation:

Currently the map directive allows only in a very restrictive way to select the XML data type that shall be used to represent a given EXPRESS data type. Today it is such restrictive that even not all possible XML data types are supported.

Proposal:

Supplement the existing directive map with a new directive called "xml-base-type" which only enforces the minimal restriction that it needs to be a data type (XML-complexType or others) which can be resolved in the given namespaces.

Benefit:

More flexibility in generation of XML-Schema out of given APs.
add the following to the definition of <inverse>, <attribute> or <entity>:

<xs:complexType name=…">

...

<xs:attribute name="xml-base-type" type="xs:NMTOKEN" use="optional"/>

</xs:complexType>

Example:

<entity xml-new="true" name="string_select" exp-type="value" >

 <attribute xml-new="true" name="translations" xml-base-type="xs:IDREF" xml-use="optional" exp-attribute="attribute-content" keep="true"/>

</entity>
Additional Notes:

1) use of the directive xml-base-type is only allowed in <attribute> and <inverse> or <entity>

2) if applied to <entity> it sets the base for the extension, i.e. the supertype

Instead of creating a new configuration directive, change the 'map' directive to be less restrictive (as proposed herein).
· This only applies to those configured bindings that use these maps (not all configured bindings). Default bindings never have this problem.

· The issue is not whether there is a common basis. It is whether you can have a tool that blindly finds the common basis. The proposed change makes it impossible to build the blind tool; it does not make it impossible to build a tool that knows and implements to the common basis.

· Similar to the relationship between clause 5.2 and clause 5.1 (the mapping tables) of an AP, if we provide a configured XML Schema in an ANNEX to an AP, it should be a requirement that the ANNEX contain any other information that would be required to perform the EXPRESS interpretation properly, such as the details of one of these MAP operations.

DE-7

8.3.4 Attribute Element

8.3.5 Inverse Element
para 2

para 2
te
Situation:

The current draft of Part-28 is based on the assumption that one input EXPRESS-schema is more or less totally translated into an XML-Schema. Smallest modifications are possible through the configuration file.

But it is not possible to break one EXPRESS entity in to two XML elements or to join two EXPRESS entities in one XML element.

Proposal:

Add a new configuration directive "xml-new" to <attribute> and <entity>.

If applied to <entity>, this directive tells the system to create a new xs:complexType which deals as container for the other inner configuration elements like <attribute> or <inverse>

If applied to <attribute>, this directive tells the system to create an xs:element or xs:attribute, depending on other configuration attributes, which is based on an EXPRESS attribute not mapped so far or mapped in a different path. Its content is described by the other attributes of the element <attribute>

Benefit:

[TODO]
add the following to the definition of <entity>, <attribute>:

<xs:complexType name=…">

...

<xs:attribute name="xml-new" type="xs:boolean" default="false" use="optional"/>

</xs:complexType>

Example:

<entity xml-new="true" name="string_select" exp-type="value" >

</entity>
Additional Notes:

1) if xml-new is applied to <attribute> the data type STRING is assumed as default. This default behavior can be changed by using the directives map or xml-base-type.
2) The directive xml-new can only be applied to <attribute> or <entity>.

Add a new configuration directive called 'new' to represent an EXPRESS entity with 2 XML elements, and to sort the attributes between the two resulting entities.

OPEN ISSUE- can you split something that is a subtype? This will be addressed in the normative text.

In 8.3.4, attribute no longer requires select attribute. Needs choice of 'select' and 'new'. (GS to draft).

DE-8

8.3.4 Attribute Element

8.3.5 Inverse Element
para 2

te
Situation:

Currently the XML mechanism ref= is not supported by the proposed draft. (ref refers to a qualified name of an xml attribute, which is defined through an xs:attribute element at the highest level in the XML-schema). By this the use of xml:lang or another attribute of an included XML-Schema is not possible.

Proposal:

Add a new configuration directive "ref" to <attribute> and <inverse>.

If applied to <attribute> or <inverse>, this directive tells the system instead of creating a type= construct to use a reference to an xml-attribute-definition in one of the qualified namespaces.

Benefit:

The date type "xml:lang" can be used.

[TODO]
add the following to the definition of <attribute> and <inverse>:

<xs:complexType name=…">

...

<xs:attribute name="xml-type-ref" type="xs:NMTOKEN" use="optional"/>

</xs:complexType>

Example:

<attribute xml-new="true" name="language_specification" xml-type-ref="xml:lang" xml-use="optional" exp-attribute="attribute-content" keep="true"/>
Additional Notes:

1) The attributes name and type are not evaluated any more if xml-type-ref is specified.

2) The value of xml-type-ref must be resolved in the used namespaces.

Add a new configuration directive called ref.

DE-9

8.3.4 Attribute Element
para 2

te
Situation:

The proposed draft does not allow to make an optional EXPRESS-attribute required or vice versa.

This is not helpful when part of an approved AP needs to be converted into an XML-schema.

Proposal:

Add a new configuration directive "xml-use" to <attribute>.

If applied to <attribute>, this directive tells the system to treat the specified attribute as optional , even if EXPRESS defines it as required or vice versa., depending on the specified value.

Benefit:

When translating part of an approved AP it is now possible to switch Express-attributes between required and optional.

[TODO]
add the following to the definition of <attribute>:

<xs:complexType name=…">

...

<xs:attribute name="xml-use" type="xs:string" use="optional"/>

</xs:complexType>

The valid values for xml-use are:
 {optional | required}

Additional Notes:

1) If the basetype of the attribute to which xml-use="required" is applied is an aggregate having a lower boundary of ==0, the lower boundary of the aggregate is raised to ==1.

Add a new configuration directive called 'use'.

DE-10

8.3.3 Entity element

8.3.4 Attribute Element

para 2

para 2

te
Situation:

There will be cases when the translation of the EXPRESS-schema into the XML-schema does not yield the required results. E.g. in the case that the outcome of the translation has to adhere to externally defined rules or standards or has to interface to existing systems.

Proposal:

Add a new configuration directive "xml-implementation" to <attribute> and <entity>.

The value of this directive shall contain the XML implementation which is to be applied as result of the translation process.

Benefit:

As a last resort this should be applied only in the rarest case to yield a specific required result in the XML-schema.

[TODO]
add the following to the definition of <attribute> and <entity>

<xs:complexType name=…">

...

<xs:attribute name="xml-implementation" type="xs:string" use="optional"/>

</xs:complexType>

Valid values for xml-implementation will contain part of an XML-schema to be inserted into the final XML-schema as part of the translation process.

Additional Notes:

1) Other directives besides select are forbidden in this case.

2) The validity of the given construct is the responsibility of the user.

3) Within the value of xml-implementation the well known replacement rules for XML specific characters have to be applied. E.g. "<" has to be coded as "<"

(see DE-21) Germany agrees that based on the resolution of DE-21, this comment may be resolved.

DE-11

8.3.3 Entity element

para 2

para 2

te
Situation:

There is no option today available to the user which allows to set the generated xs:complexType of an EXPRESS entity to abstract. So that it is within the generated schema but can be instantiated through its subypes only.

Proposal:

Add a new configuration directive "xml-facet" to <entity>.

The value of this directive shall contain the name and value a valid XML attribute which is than to be used to amend the generated xs:complexType

Benefit:

Allow the user to take control over if a xs:complexType can be instantiated or not

[TODO]
add the following to the definition of <entity>

<xs:complexType name="…">

...

<xs:attribute name="xml-facet" type="xs:string" use="optional"/>

</xs:complexType>

Valid values for xml-facet will contain a valid XML attribute and its value to set to amend the generated xs:complexType.

Additional Notes:

1) The name and the value of the valid XML attribute have to be separated by "=" (equal sign) .

Add new configuration directive 'xml-facet'.

DE-12

8.2.5 exp‑attribute

8.5.1.5 no‑tag
para 5

te
Situation:

According to the current draft it is not possible to represent one attribute of an EXPRESS entity as XML-textnode. Example:

 <Translation xml:lang="de-DE" >Luftsack</Translation>

Proposal:

Allow the exp-attribute with a new value ="no-tag-simple" to become applicable to single attributes which are themselves not based on EXPRESS entities

Benefit:

A more dense coding of instance data

[TODO]
Additional Notes for extension case:

1) exp-attribute="no-tag-simple" may occur only once in the configuration file per EXPRESS entity

2) the same attribute must have a map directive assigned to set the new xml base type.

3) All other attributes of this EXPRESS entity may be set to exp-attribute="attribute-content" only.
Add new configuration directive " no-tag-simple". Delete Note 2. EJB will provide text.

This is an extension of the no-tag concept, but the rules are different. This replaces content model of entity type, where no-tag adds.

DE-14

6.3.2.6 Aggregates of SELECT data types

6.3.3.2 SELECT data types

6.4.4 SELECT underlying types

8.3.1 Option

8.3.2 Type

8.3.4 Attribute Element

8.3.5 Inverse Element

te
Situation:

The current draft spends a lot of effort on creating a more or less type safe mapping of EXPRESS SELECT types. In most cases it creates two XML constructs for each EXPRESSS SELECT type, one for attributes based on SELECT and one for attributes based on aggregates of SELECT . E.g.

<xs:group
name="Period_or_date_select" >
<xs:choice>

<xs:element ref="Duration"/>

<xs:element

 ref="Event_reference"/>

<xs:element ref="Date_time"/>
</xs:choice>

</xs:group>

<xs:complexType

name="Period_or_date_select">
<xs:group

ref="Period_or_date_select"/>
</xs:complexType>

However it does not support a simpler method just using xs:IDREF and xs:IDREFS.
Proposal:

Let the user decide if he needs to have the type safe mechanism or if the simpler method is sufficient.

Therefore create a new configuration directive, called "xml-mapping-select" which allows the user to switch between both methods globally and/or on type/attribute base

Benefit:

A more dense coding of instance data

More adaptable to outside requirements

[TODO]
add the following to the definition of <option>,<type,<attribute> and <inverse>

<xs:complexType name=…">

...

<xs:attribute name="xml-mapping-select" type="xs:string" default="standard" use="optional"/>

</xs:complexType>

Valid values for xml-mapping-select will be {'standard'|'simple'}. It can be assigned to:

· <option> setting the application specific default.

· <type> in case of a SELECT type it defines how refernces to it are handled

· <attribute> in case its fundamental type is a SELECT type

· <inverse> in case its fundamental type is a SELECT type

The following priority is assumed:

{attribute | inverse} > {type} > {option}

The value "standard" selects the behavior as described in the draft today.

The value "simple" will have the following effects:

1) Reference on a SELECT type (e.g. ref="xyz_select") will be replaced by ref="xs:IDREF"
2) Reference on an aggregate of SELECT type type (e.g. ref="xyz_select") will be replaced by ref="xs:IDREFS". Note: XML attributes assigned to <xs:group> will not be created, see 6.3.2.6 Aggregates of SELECT data types
3) if used in <option> with the value simple, and no higher occurrences revert this, than EXPRESS SELECT types will not be mapped to XML-schema, Corresponding instance elements and keys will also not be created.

4) if used in <inverse> or <attribute> point 1)+2) are applicable but not point 3).
Instead of a new configuration directive, we may have to fix sections 8.2.2 and 8.2.3 to handle SELECT and aggregates of SELECT. Also, configuration syntax for reference to aggregate vs IDREF (EJB). Make sure content=ref and exp-type=root work correctly. Attribute-tag needs to apply to select types.

DE-15

6.3.2 Aggregation data types

8.3.1 Option

8.3.2 Type

8.3.4 Attribute Element

8.3.5 Inverse Element

te
Situation:

The current draft spends a lot of effort on creating a more or less type safe mapping of EXPRESS AGGREGATE types.

However it does not support a poor mans mapping, just a simpler method just using xs:IDREFS for the case of aggregates based on Entities. E.g.

<xs:complexType
name="Approval" >
<xs:sequence>

<xs:elemnt name="Is_applied_to"

 type="xs:IDREFS"/>

. . .

</xs:complexType>

Proposal:

Let the user decide if he needs to have the type safe mechanism or if the simpler method is sufficient.

Therefore create a new configuration directive, called "xml-mapping-aggregate" which allows the user to switch between both methods globally and/or on type/attribute base

Benefit:

A more dense coding of instance data

More adaptable to outside requirements

[TODO]
add the following to the definition of <option>,<type,<attribute> and <inverse>

<xs:complexType name=…">

...

<xs:attribute name="xml-mapping-aggregate" type="xs:string" default="standard" use="optional"/>

</xs:complexType>

Valid values for xml-mapping-aggregate will be {'standard'|'simple'}. It can be assigned to:

· <option> setting the application specific default.

· <type> in case of a AGGREGATE type it defines how refernces to it are handled

· <attribute> in case its fundamental type is a AGGREGATE type

· <inverse> in case its fundamental type is a AGGREGATE type

The following priority is assumed:

{attribute | inverse} > {type} > {option}

The value "standard" selects the behavior as described in the draft today.

The value "simple" will have the following effects:

1) Reference on a AGGREGATE type (e.g. ref="xyz_select") will be replaced by ref="xs:IDREFS"
2) if used in <inverse> or <attribute> point it may override a global setting in <option> or <type>.
This has been covered (see DE-14).

DE-16

8.3.1 Option

8.3.2 Type

8.3.4 Attribute Element

8.3.5 Inverse Element

te
Situation:

The current draft spends a lot of effort on creating a more or less type safe mapping of EXPRESS attributes based on entity types.

However it does not support a poor mans mapping, just a simpler method just using xs:IDREF for the case of an attribute based on an Entity. E.g.

<xs:complexType
name="Approval" >
<xs:sequence>

<xs:element name="Planned_date"

type="xs:IDREF" minOccurs="0"/>

. . .

</xs:complexType >

Proposal:

Let the user decide if he needs to have the type safe mechanism or if the simpler method is sufficient.

Therefore create a new configuration directive, called "xml-mapping-entityRef" which allows the user to switch between both methods globally and/or on type/attribute base

Benefit:

A more dense coding of instance data

More adaptable to outside requirements

[TODO]
add the following to the definition of <option>,<attribute> and <inverse>

<xs:complexType name=…">

...

<xs:attribute name="xml-mapping-entityRef" type="xs:string" default="standard" use="optional"/>

</xs:complexType>

Valid values for xml-mapping-entityRef will be {'standard'|'simple'}. It can be assigned to:

· <option> setting the application specific default.

· <attribute> in case its fundamental type is an entity type

· <inverse> in case its fundamental type is an entity type

The following priority is assumed:

{attribute | inverse} > {option}

The value "standard" selects the behavior as described in the draft today.

The value "simple" will have the following effects:

3) Reference on an ENTITY type (e.g. ref="xyz_select") will be replaced by ref="xs:IDREF"
4) if used in <inverse> or <attribute> point it may override a global setting in <option> or <type>.
Content = 'ref' and exp-type= 'root' already do this. No action required. (see DE-14)

DE-18

8.3.1 Option

8.3.2 Type

8.3.4 Attribute Element

8.3.5 Inverse Element

te
Situation:

The current draft spends a lot of effort on creating a more or less type safe mapping of EXPRESS to XML-schema. One of these aspects is the definition of key and keyref constraints.

However it does not allow to suppress the generation of those key / keyref constraints.

Proposal:

Let the user decide if he wants to use the key / keyref mechanism or not.

Therefore create a new configuration directive, called "xml-mapping-keykeyRef" which allows the user to switch the generation of key / keyref constraints on or off.

Benefit:

A simpler XML-Schema.

More adaptable to outside requirements

[TODO]
add the following to the definition of <option>

<xs:complexType name=…">

...

<xs:attribute name="xml-mapping-keykeyRef" type="xs:string" default="standard" use="optional"/>

</xs:complexType>

Valid values for xml-mapping-keykeyRef will be {'standard'|'none'}. It can be assigned to:

· <option> setting the application specific default.

The value "standard" selects the behavior as described in the draft today.

The value "none" will have the following effects:

1) The generated XML-schema will not contain any keyref-constraints.

(see US-3) We will add this configuration directive for use when the conformance class which includes type safety is chosen.

DE-19

6.6.*

XML Schema definitions and declarations for EXPRESS entity data types

8.2.13 Inheritance

te
Situation:

The current draft restricts the use of the configuration directive "inheritance", to be globally applicable only. Even if the user sets inheritance="true" not every EXPRESS entity may be may be affected by that setting, because of limitations XML.

However the user has no way to force selected entity types to use the inheritance free mapping today.

Proposal:

Let the user decide if he wants to exempt selected entities from the inheritance="true" mapping or not.

Therefore create a new configuration directive, called "xml-inheritance-free" which allows the user to force an inheritance-free mapping on selected entities even when we decided globally to use inheritance.

Benefit:

More adaptable to outside requirements

[TODO]
add the following to the definition of <entity>

<xs:complexType name=…">

...

<xs:attribute name="xml-inheritance-free" type="xs:boolean" default="true" use="optional"/>

</xs:complexType>

Valid values for xml-inheritance-free will be {'true'|'false'}. It can be assigned to:

· <entity xml-inheritance-free="true" …> forcing the selected entity to use the inheritance-free mapping

Additional Notes:

1) option only allowed when inheritance="true" is set globally in <option>.

Fix 6.6- bullet 3 goes away (see US-23). NO new directive required. Instead, in clause *allow inheritance option to be specified on entity as well as globally.. Also need to add inheritance to 8.5.

DE-20

8.3.3 Entity element

8.3.4 Attribute Element

8.3.5 Inverse Element

te
Situation:

The attributes "select" and "invert" defined in several configuration elements are used to denote EXPRESS entities and/or attributes as source for other configuration options and configuration attributes to be applied to.

It currently does not support a path syntax, which allows the navigation across more than one entity

Proposal:

Extend what can be described by select and invert to a path which can extend from one starting entity across any number of intermediate entities to exact one attribute using common used <entity>{.<attribute>{.<attribute>}…} notation.

Benefit:

More adaptable to outside requirements

[TODO]
No change to Annex C, since the underlying data type xs:NMTOKEN is already sufficient.

Just change the descriptions of select= and invert= in chapter 8 to allow more flexibility

Examples of configuration directive:

<entity xml-new="true" name="translatable_string"
exp-type="value" select="multi_language_string.primary_language_dependent_string" >
<attribute xml-new="true" name="\translations"

xml-base-type="xs:IDREF" xml-use="optional"

select="multi_language_string"

exp-attribute="attribute-content" />

<inverse exp-attribute="attribute-content"

xml-type-ref="xml:lang" name="xmlLang„

invert="multi_language_string.primary_language_depend
ent_string.language_specification"

xml-use="optional" keep="true"/>

<inverse exp-attribute="no-tag-simple" map="string"

name="becomes_content_of_type"
invert="multi_language_string.primary_language_depend
ent_string.contents" />

</entity>

This is intended to only apply to referenced attributes (no-tag). Ed and Gunter will determine how this can work properly.

If it is determined that an appropriate solution is viable, EJB will write up text. GS will provide a concrete use case and proposal.

DE-21

8 Configuration Lanuage

te
Situation:

The current draft makes very strong/strict assumptions about the generated XML-schema.

There is no way today e.g. to add additional namespaces or include other XML-Schema. In addition the name and structure of the "uos"-object is inflexible.

And therefore adoption of the translation process to outside requirements is not possible today.

Proposal:

Give the user more flexibility on how he wants the XML-Schema to be created.

Therefore a set of 5 new configuration directives need to be created. These new directives deal with the structure of the <xs:schema> (see 6.8) and <xs:complexType name="uos"> (see 6.9).

The proposed new directives are:

<schema>

<namespace>

<import>

<containerObject>

<additionalObject>
</schema>

The structure and functionality of the proposed new configuration directives will be described in the next column.

Benefit:

More adaptable to outside requirements

 [TODO]
The configuration directive <schema> allows control over all aspects of the <xs:schema> element (see 6.9) defined by the current draft. Example of directive:

<schema targetNamespace = "http://www.omg.org/PLMServices1.0/XMLSchema" elementFormDefault="qualified" attributFormDefault="unqualified" defaultRootObjectType="PLM_root_object" defaultObjectType="PLM_object" schema-version="1.0">

the definition of <schema> could be as follows:

<xs:complexType name="schema">

<xs:attribute

name="targetNamespace"

type="xs:URI" />

<xs:attribute

name="elementFormDefault"

type="xs:string" />

<xs:attribute

name="attributeFormDefault"

type="xs:string" />

<xs:attribute

name="defaultRootObjectType"

type="xs:string" />

<xs:attribute

name="defaultObjectType"

type="xs:string" />

<xs:attribute

name="schema-version"

type="xs:string" />

</xs:complexType>

The sub directive <namespace> enumerates all the namespaces to be used in the generated XML-Schema. Example of directive:

<namespace namespace-urn= "http://www.w3.org/2001/XMLSchema" namespace-prefix="xs" />

The sub directive <import> enumerates all the external schemata to be used/referenced by the generated XML-Schema. Example of directive:

<import namespace-urn= "http://www.w3.org/XML/1998/namespace" schemaLocation="xml.xsd" />

The sub directive <container-object> defines an application specific uos-element using internally the directive "xml-implementation" to give the user full flexibility.

Example of element inserted into XML-Schema:

<xs:complexType

 name="PLM_container">

<xs:choice

maxOccurs="unbounded"

minOccurs="0" />

<xs:attribute name="key"

type="xs:ID"

use="required"/>

<xs:attribute name="version_id"

 type="xs:string"

use="required"/>

<xs:attribute ref="xml:lang"

use="optional"/>
</xs:complexType>

Example of directive:

<containerObject

xml-implementation=

"<xs:complexType

name="PLM_container" >

<xs:choice minOccurs="0"

maxOccurs="unbounded" />

<xs:attribute name="key"

type="xs:ID"

use="required"/>

<xs:attribute name="version_id"

type="xs:string"

use="required" />

<xs:attribute ref="xml:lang"

use="optional" /> </xs:complexType >" />

Additional Notes:

1) The <container-object> must always contain an element of type <xs:choice>. This is the place where all instanciable (root-) elements will be enumerated.

2) The root-elements will be inserted having the following form:
<xs:element name="Accuracy" type="Accuracy"/>

 The sub directive <additional-object> is used to insert xml elements which are not part of the original EXPRESS-Schema and which cannot be derived using any other configuration directive. For example a definition of a root object if the <ex:entity> defined by the draft is not used.

Example of element inserted into XML-Schema:

<xs:complexType

abstract="true"

name="PLM_object">

<xs:attribute name="key"

type="xs:ID"

use="required"/>
</xs:complexType>

Example of directive:

<additionalObject

xml-implementation=

"<xs:complexType name=

 "PLM_object" abstract="true"

 > <xs:attribute name="key"

 type="xs:ID" use="required"

 /> </xs:complexType >"
/>

Additional Notes:

1) The <additional-object> become part of the generated-Schema, but cannot be included into the container-object.

(see NO-3)

Add to configuration directives:
schema will be accepted as is (with some minor modifications): defaultObjectType specifies a replacement name for ex:Entity data type and instance element. If defined as additionObject as well, may have different attribute set from ex:Entity. DefaultRootObjectType (if provided) identifies abstract type (supertype) of all independently instantiable entity data types. This should be defined in 3 and 7.3. RootObjectType will replace ex:Entity in the content model of the uos.

Namespace will be accepted as is but change the attribute names to delete 'namespace-'.

Import will stay but change the attribute names to delete 'import-'.

New directive ContainerObject will rename uos and supply additional attributes. Choice model not required. Content model is the same as uos.

New directive additionalObject accepted as is. Change wording slightly:

'… used to insert xml elements representing high level classifications that are not part of the original …' Always abstract. Define additionalObject name and type. Can have additional XML attributes. Can have subtype attribute. NOTE: Because it is abstract, any instance of an additionalObject type will be an element corresponding to an EXPRESS entity type defined in the EXPRESS Schema.

Also, we need to add a subtype configuration directive that is allowable on type, and identifies additionalObjects.

MISCELLANEOUS

US-1
6.6.4.4

ge
The words need to clarify that although unchanged and redeclared elements are included, when an element is redeclared, it REPLACES the original unchanged element, and in that case, the unchanged element is NOT included.

Text clearly states that redeclared elements REPLACE the original.

The example provided does not capture the intent of this section and should be replaced. Change all examples the use this 'DERIVE SELF\named_unit.dimensions …'

US-4
10303-28 Wg11n229p28e2
All
te
Part 28 Edition 2 requires a user to define names for the AND/OR combinations that may occur in the instance data using configuration directives. This is not practical for large applications where the combinations that will occur cannot be predicted in advance.
Support AND/OR inheritance in Part 28 using a mechanism similar to the external mapping of Part 21.
Accepted SOLUTION B (see US-4_resolution.doc).

To do this:

add the partial entity elements to clause 6.6.X

add the complexEntity type to clause 6.6.3 as a subtype of ex:Entity

Clause 7.3, provide this as one possible way to represent an entity. Provide the rules.

In the entity group (6.6.6) add complexEntity.

US-12
4.1

te
There is no text that permits a document consisting only of a single uos (with no iso-10303-28 packaging) to conform.
Modify either 4.1 or clause 5 to specify a conforming document structure that consists only of a conforming uos element.
Accepted. Text is required for 4.1 (EJB to draft text). Also, draft text for data sets for a configured schema. Fixes are required to Clause 7.2 and to 6.9 (possibly) to incorporate some "section context elements" from Part 21.s

US-13
Clause 4, 6.5.6, 6.6.4, 6.6.8

te
There is no notion of a conforming XML schema, per se, just the concept of a conforming schema generator. Clause 4 should have a clause that specifies a conforming XML schema. Moreover, the conforming XML schema should not be required to contain the fine points of EXPRESS semantics that can just barely be implemented by some XML validators, notably attribute redeclaration and key/keyref checking.
a. Create a new clause 4.4 to define conformance of an XML schema. Move the current 4.4 to 4.5 and modify it to require that the processor generate a conforming XML schema, as specified in the new 4.4.

b. In the new clause 4.4 or clause 6.5.6 and 6.6.8., explicitly state that each set of key/keyref declarations is optional, but that any derived schema shall contain all of them or none of them.

Similarly, the schema declarations supporting redeclared attributes in 6.6.4.3 and 6.6.4.4 should be optional. Redeclarations may be ignored.
Accepted. In b, define conformance class 2 properly (see US-3). Conformance class 2 has key/keyrefs, constrained string/ binary, and redeclarations.
Conformance:

1) Document

· 10303-28 doc

· uos doc

· configured doc

2) preprocessor

can generate one of the above

3) post processor

· accepts and processes conforming XML doc (CONFORMANCE CLASS 1)

· also validates (CONFORMANCE CLASS 2).

4) conformance of configured text

5)conformance of configured schema

6) conformance of a schema generator

US-16
Annex B

te
The URNs in Annex B appear to be invalid. (But I have seen URIs that simply begin standard.iso.org/...).

The content of B.2 and B.3 may be out of scope for Part 28, unless it is derived directly from the ASN.1 identifiers for the schemas.

In particular, B.3 describes objects that are not "registered" in the ISO standards. Part 28 cannot create an entry in the registry of another standard. A TCorr for each such standard would be required.
Determine some valid URI/URN for elements of ISO schemas and revise Annex B, at least B.1 and perhaps B.2 accordingly.

If necessary, delete B.3.
Change ANNEX B, and reference the draft providing directive.

Change ANNEX B.1: urn:iso:std:iso:10303:28:ed-2:2005:schema:common

B.2: urn:iso:std:iso: [status ":"]docnumber ":"[partnumber ":"] [edition ":"] [version ":"]express:schema_name

B.3: urn:iso:std:iso: [status ":"]docnumber ":"[partnumber ":"] [edition ":"] [version ":"]defaultXML:schema_name

Add text to B2 and B3 to define the fields. For status, when the document is adopted by ISO as an international standard, the status field shall not be present.

UK-3

7.2 and 7.2.1
7.2 3rd paragraph and 7.2.1 1st paragraph
Minor Technical
There are usage scenarios where knowledge of the EXPRESS schema is not required. Also, these two paragraphs seem to contradict each other (zero or more vs. required).
Make the inclusion of a reference to the EXPRESS schema optional.
Usage scenarios where knowledge of the EXPRESS is not required consist of uos only exchanges (resolved per US-12)

This is not a contradiction- but for clarity, copy the sentence in 7.2.1 into 7.2. None are required, but you do need one for each EXPRESS schema.

UK-4

7.2.1
5th paragraph
Minor Technical
The use of ASN.1 for the schema identifier is not universal (even though SC4 has adopted it).
Either remove this reference or specify that it is only applicable to implementations trying to conform to an SC4 standard.
Add a note:

NOTE: Only some EXPRESS Schemas will have ASN.1 identifiers. This provides for those that do.

Change ' shall be the EXPRESS (ASN.1) schema identifier' to ' shall be the (ASN.1) schema identifier for the EXPRESS schema'.

UK-5

7.2 and 7.2.2
7.2 4th paragraph and 7.2.2 1st paragraph
Minor Technical
There are usage scenarios where knowledge of the EXPRESS schema configuration is not required. Also, these two paragraphs seem to contradict each other (zero or more vs. required).
Make the inclusion of a reference to the EXPRESS schema configuration optional.
There is no contradiction- 7.2.2 says specifically when one is required.

UK-9
10303-28
7.2.3
2nd paragraph
Minor Technical
This paragraph goes beyond what Part 11 requires which does not not specify what happens if a population is not valid with respect to the schema. There is no need for Part 28 to go beyond that.
Change text to say that the population element specifies the set of data constituting a population as defined in Part 11 and leave it at that.
SC4 has determined that this capability is required for Part 21 ed 2, and therefore it is in P28 ed2 with the same interpretation. No action required.

UK-10
10303-28
7.2.4
4th paragraph
Minor Technical
There are usage scenarios where a reference from the uos to EXPRESS/configuration are not required.
Make this reference optional or part of a conformance class and change the text in the remainder of 7.2.4.x to allow this.
7.2.4 fourth paragraph will be revised per US-12.

7.2.4.1, first paragraph makes it clear that references to express and configuration files are optional. The remainder of 7.2.4.1 describes those cases in which the references appear. No other subclause of 7.2.4 refers to these references.

UK-11
10303-28
7.2.4.2

Minor Technical
There is no requirement in many usages for a global unique identifier for the XML Schema. A relative location is often sufficient.
Reword this paragraph.
It is unclear to what this needs to be reworded. To be considered only if the UK recommends rewording.

UK-15
10303-28
General

Minor Technical
Part 28 Edition 1 used XLink for references between XML documents.
Review E1 XLink use for inclusion in E2, perhaps as an optional capability or conformance class.
This was reviewed by the developing committee at the start of Part28 edition 2, and it was determined that the use of XLink was not warranted. The use case and justification for the additional complexity of XLink is not clear.

UK-17
10303-28
Annex D

Major Technical
Issues with the ex:Entity and non-entity and substitution groups were identified in discussions on the xmlsc4 exploder. Those emails have not been included here but for reference see Ed Barkmeyer response sent Fri 07/05/2004 16:43 with Subject Re: My unit of serialization complexType confusion.
Address the problem.
a. Change 6.6.5 to require substitutionGroup="ex:Entity" to be present on entity instance elements with inheritance-free mappings. Then all entity instance elements (regardless of inheritance/free mapping) are in the ex:Entity substitution group.

b. In 6.6.3.2 (and Annex D) introduce an ex:edokey element with abstract="true". And change 6.6.7 to require the ~entity~_Key proxy element to have substitutionGroup="ex:edokey". Then all proxy elements are in the ex:edokey substitution group.

c. 6.9 Name all of the referenceable instance elements. Also fix 6.9 (per US-24)

UK-19
10303-28
7.3.1.1
1st paragraph
Minor Technical
This paragraph seems to preclude missing mandatory attributes.
Change the text to enable incomplete files to be valid Part 28 files, those where mandatory EXPRESS attributes have no value.
REJECTED- this breaks the fundamental rules of the EXPRESS model. Depending on the use case, there may be work arounds involving configurations or value conventions.

UK-20
10303-28
General

Major Technical
Part 28 assumes an EXPRESS- and Part 28-aware processor is used as part of the implementation. There are major usage scenarios where this is not the case.
Change Part 28 so that the default usage scenario assumes no EXPRESS- or Part 28- aware processor is part of an implementation.
RESOLVED per US-12.

SE
10303-28
4.2

ge
4.2: "Every conforming post-processor should be able to accept all conforming XML forms that correspond to the EXPRESS schemas for which conformance is claimed."

-> Clarify what forms of XML a post-processor should accept. Is it the any form of the claimed EXPRESS schemas, or is it the forms (XML Schemas) that is claimed? Is it possible to say the same as for the pre-processor in section 4.1: "Every conforming pre-processor shall be able to handle all configuration options.", or is there a reason for not mandating that the post-processing should be as flexible as the pre-processor?
(see US-13)

JP3

FT
10303-0028 ed2
Annex E

ge
The role of this Annex is not clear to be understood, and It seems not adequate to be normative.
It is recommended to improve the description to make the role clearer, and to change it to informative.
This ANNEX is sited in 5.3. Its intent is described there.

JP4

FT
10303-0028 ed2
Annex X

ge
A better example is necessary to help understanding of the mapping specification.
It is recommended to add an Annex including a good example of the complete set of EXPRESS Schema, resultant XML Schema and instance data.
AGREED to provide the Annex for default binding provided resources are available.

JP5

FT
10303-0028 ed2
Annex Y

ge
An XML representation of EXPRESS Schema is useful for implementers.
It is recommended to add an Annex including an XML representation of EXPRESS Schema like the late binding in ed1, or an example shown in the slide number 47 of the presentation material by H. Preston at the Poitier meeting.

(The file name is “Part28_XSL.ppt”)

As for the latter case, more breakdown structure of attributes are desirable.
Requested clarification. Does JP want the equivalent of Annex C from edition 1? Or is this an extension of JP-4?

One possible solution is not to have edition 2 supersede edition 1. This is being proposed to SC4.

No action can be taken without clarification from JP.

1
MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China)
** = ISO/CS editing unit

2
Type of comment:
ge = general
te = technical
ed = editorial

NB
Columns 1, 2, 4, 5 are compulsory.

page 1 of 1
FORM 13B (ISO) version 2001-09
1
MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2
Type of comment:
ge = general
te = technical
ed = editorial

NOTE
Columns 1, 2, 4, 5 are compulsory.

page 40 of 1
ISO electronic balloting commenting template/version 2001-10

