| SO TC 184/SC4/WG11 N?7?77? Date: 2004-07-27
Super sedes

I SO 10303-29

Industrial automation systems and integration — Product data representation and
exchange — Part 29: Implementation methods: XML encoding of the exchange
structure of product data defined by an Application Protocol

COPYRIGHT NOTICE:

This 1SO document is an International Standard and is copyright-protected by 1SO. Except as permitted under
the applicable laws of the user's country, neither this SO draft nor any extract from it may be reproduced,
stored in aretrieval system or transmitted in any form or by any means, electronic, photocopying, recording, or
otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to 1 SO at the address below or 1SO's member body
in the country of the requester:
Copyright Manager
ISO Central Secretariat
1 rue de Varembe
1211 Geneva 20 Switzerland
telephone: +41 22 749 0111
telefacsimile: +41 22 734 0179
Internet: central @isocs.iso.ch
X.400: c=ch; a=400net; p=iso; o=isocs, s=centra

Reproduction for sales purposes for any of the above-mentioned documents may be subject to royalty pay-
ments or alicensing agreement. Violators may be prosecuted.

ABSTRACT: Thisdocument specifies an exchange format that allows product datato be transferred from one
computer system to another using XML.

KEYWORDS: automation, automation engineering, computer applications, industrial products, data, data
representation, data exchange, coding (data conversion), XML, implementation.

COMMENTSTO READER:

This document describes an XML format for Application Protocol data exchange. A more general format for
EXPRESS defined data exchange is described in | SO 10303-28. The format described in this document is
related to the 10303-28 format by a configuration given in 10303-28.

Project Leader: Dr. Martin Hardwick Project Editor: Dr. Martin Hardwick
Address: STEP Tools, Inc. Address: As shown.
14 First Street

Troy, NY 12180-3810 USA

Telephone: +1 (518) 687-2848 x306 Telephone:
Telefacsimile: +1 (518) 687-4420 Telefacsimile:
Electronicmail: hardwick@steptools.com Electronic mail:

1997-02

| SO/WD 10303-29

© IS0 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from either 1SO at the address below or 1SO's member
body in the country of the requester.

I SO copyright office

Case Postale 56 - CH-2111 Geneve 20 - Switzerland
Tel. +41 2274901 11

Fax +4122 7341079

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

| SO/WD 10303-29

Contents page
FOrBW O . . e Vi
INEFOTUCTION . . .ot e e e e e e e e e Vii
L SCOPE . oottt 1
2 NOrMELiVE FEfEIENCES . . . oottt 1
3 Terms, definitions, and abbreviations 2
3.1 Termsdefined iN1SO 10303-1 oottt e et et 2
3.2 Termsdefined iN 1SO 10303-11ottt e 3
3.3 Termsdefinedin XML Standards i 3
34 Other definitionSt 3
35 ADDIEVIALIONS . . ot 3

4 Exchange structure fundamental conceptsand assumptions 4
A1 INtrodUCHION ... 4
4.2 Notational and typographical conventionst i 4
4.3 CONfOMMENCEottt et et e e e e e e e e e e 4

5 Formal definitions 5
B EXChange StrUCIUNE . . . oo i e et e i e e e 5

B BasiCTOKENS 5
6.1 KB WOIAS . ..ot e 5
6.1.1 Entity and Defined TypeKeywords i i 5

6.1.2 Attribute Keywordst 6

6.1.3 Application Object Keywordst it 6

6.1.4 Application Object Attribute Keywords i, 6

6.2 Simpledatatypeencodingsc.iit it e e e 6
B.2. L IO .ot e 6

B.2.2 Real ... 6

B.2.3 SHING ..ottt e 7

6.2.4 Entity Instanceidentifiers.o e 8

6.2.5 .Restricted Entity Instanceidentifiers.......... ... i i 8

6.2.6 Entity Instancereferences. i e e 8

6.2.7 ENUMEration VAlUESottt 9

B.2.8 BiNary ..ot e e e 9

7 Header ement 10
7.1 Header section entitiest 10

7.2 Header seCtion schema oo 10
7.2.1 exchange desCriptiont e 11

722 EXChange Name o e 11

7.2.3 exchange sChema e e 13

7.2.4 exchange populationot e e 13

7.25 eXChange Spaceot e 14

©IS0 2004 — All rights reserved iii

| SO/WD 10303-29

8 Exchange Structure Population e 15
8.1 INcluded DOCUMENESottt e e e e e e 15
8.1 AlIM EIamMeENntS e e 16

8.1.2 ARM ElemMents o i e e 16

8.2 RESOUICE ElOMENtSo 17

8.3 Exchange Structure Population 17
8.3.1 Entity Instance Population i 17

8.3.2 Application Object Population 17

9 Mapping of Entity Instancestotheexchangestructureo, 18
9.1 Mapping of EXPRESSdatatypest e e 18
9.1.1 Mapping of EXPRESSsimpledatatypes., 18

0.0, 2 AQOrgaIES . .ot e 21

9.1.3 Simpledefined typeS . ..o oo 26

0.1.4 ENUMEratiON By PES ..ttt e e e 27

0.1.5 SAeCtdatatyPes ...t e e 27

9.1.6 Entity Instancereferencedement e 30

9.1.7 Entity Instancereferenceelementshortform........... 31

9.2 Mapping of EXPRESS entity datatypes ...t 32
9.2.1 Mappingof asimpleentity ingtance 32

9.2.2 Mapping of OPTIONAL explicitattributes 34

9.2.3 Mapping of derived attributes. e 35

9.2.4 Mapping of attributes whose valuesareentity instances 35

9.2.5 Entities defined as subtypes of other entities 37

9.2.6 Explicit attributesredeclaredasDERIVEd it 46

9.2.7 Attributesredeclared asINVERSE e 46

9.2.8 Attributes redeclared asexplicit attributes i oo 47

9.29 Entity loCal TUIES o e e 48

9.2.10 Mapping of INVERSE attributes i 48

9.2.11 Encoding of ShOrt Namesottt e e 48

9.3 Mapping of the EXPRESS element of SCHEMA 48

9.4 Mapping of the EXPRESS element of CONSTANTot 48

9.5 Mapping of the EXPRESSelementof RULE 48

0.6 REMAIKS . ..o 48

10 Mapping of Application Object instancesto the exchange structure 48
10.1 Mapping of Application ObjeCtt e e e 49
10.2 Mapping of Application Object attribute i 49
10.3 Mapping of Application Object attributepath 50
10.4 Mapping path validation i i e e e 54

11 ConfOrmManCe ClaSSES v vttt ettt e e et e e e e e 54
11.1 Syntactic ConformManCettt ettt et e et e e e 54
11.2 AIM CONfOMMAENCE o e ottt e et e e e e e e e e e e e et e e 55
11.3 ARM ConfOrmanCeottt e e e e e e e 55
114 Conformance Class Lt e 56
11.5 ConformanCe ClasS2 oo ittt e e e e e e e 56
11.6 ConformanCe ClasS3ttt et e e e 56
11.7 ConformanCe ClasS4ttt e e e e e e e 56

iv ©IS0 2004 — All rights reserved

| SO/WD 10303-29

11.8 Conformance Classhttt e e e 57
11.9 ConformanCe ClasS Bttt e e e 57
Annex Guidlinesfor trangating 1SO 10303-21 filesto ISO10303-29cccvivnn.. 58
Annex Information object registration e 59
C.1 Document identificationouiiuie i 59
C.2 Schemaidentification i 59
Annex Guidlinesfor writing XML Schema ... i e e 60
Annex Protocol |mplementation Conformance Statement (PICS) proforma 61
E.1 Conformanceto specified function i 61
Check asmany asare appropriate.ovvtie ettt 61
E.1.1Entity iNStance encodingciii ittt e e 61
E.1.2Shortnameencodingt 61
E.13StNg encodingciii i i 61

E.2 Implementation limits o e 62
Annex Exampleof acomplete CC 2 exchangestructurecoiiiiiienennnn.n. 63
F.1 INtrodUuCtion e 63

F.2 EXample sChemat e e e et e e 63

F.4 Exampleexchange StruCtUrettt e e e e et e ettt 64
Annex Exampleof acomplete CC4 exchangestructurec.coiiiiieninnnn.n. 66
INAEX . e 67
Tables page
Table5- Quick referencemappingtable 26

©IS0 2004 — All rights reserved v

| SO/WD 10303-29

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national stan-
dards bodies (1SO member bodies). The work of preparing International Standards is normally carried
out through 1SO technical committees. Each member body interested in a subject for which atechnical
committee has been established has the right to be represented on that committee. International organi-
zations, governmental and non-governmental, in liaison with SO, also take part in the work. SO col-
laborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardizations.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
3.

Draft Internationa Standards adopted by the technical committees are circulated to the member bodies
for voting. Publication as an International Standard requires approval by at least 75 % of the member
bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of 1SO 10303 may be the
subject of patent rights. 1SO shall not be held responsible for identifying any or al such patent rights.

International Standard 1SO 10303-29 was prepared by Technical Committee ISO/TC 184, Industrial
automation systems and integration, Subcommittee SC4, Industrial data.

This International Standard is organized as a series of parts, each published separately. The structure of
this International Standard is described in 1SO 10303-1.

Each part of this International Standard is a member of one of the following series. description meth-
ods, implementation methods, conformance testing methodology and framework, integrated generic
resources, integrated application resources, application protocols, abstract test suites, application inter-
preted constructs, and application modules. This part is a member of the implementation methods
series.

A completelist of parts of 1ISO 10303 is available from the Internet:

<http://ww. ni st.gov/sc4/editing/step/titles/>

Annexes A, B, C, D, E and F form a normative part of this part of ISO 10303. Annexes G and H are
for information only.

Vi ©IS0 2004 — All rights reserved

| SO/WD 10303-29

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation of product infor-
mation and for the exchange of product data. The objectiveisto provide a neutral mechanism capable
of describing products throughout their life cycle. This mechanism is suitable not only for neutral file
exchange, but also as a basis for implementing and sharing product databases, and as a basis for
archiving.

This part of 1SO 10303 specifies a mechanism that allows product data described by an Application
Protocol to be transferred from one computer system to another using XML.

Major subdivisionsin this part of SO 10303 are:

— gpecification of the exchange structure for data conforming to an Application Protocol;

— gpecification of the exchange structure for data conforming to Application Objectsin an Applica-
tion Protocol;

— mapping from an EXPRESS schema onto XML.

NOTE The examples of EXPRESS usage in this part of 1SO 10303 do not conform to any particular style
rules. Indeed, the examples sometimes use poor style to conserve space or to concentrate on the important points.
The examples are not intended to reflect the content of the information models defined in other parts of this Inter-
national Standard. They are crafted to show particular features of EXPRESS or of the exchange structure. Many
examples are annotated in a way that is not consistent with the syntax rules of this part of 1SO 10303. These
annotations are introduced by symbolic arrows, either horizontal '---->', or vertical. These annotations should be
ignored when considering the parse rules. Any similarity between the examples and the normative models speci-
fied in other parts of this International Standard should be ignored. Several mapping examples have been pro-
vided throughout this document. Additional spaces and new lines have been inserted into some of these examples
to aid readability. These spaces and new lines need not appear in an exchange structure.

This part will be related to the more general mapping of EXPRESS to XML Schema given in 1SO
10303-28 by a configuration description that will be included in 1SO 10303-28.

©IS0 2004 — All rights reserved vii

| SO/WD 10303-29

viii ©IS0 2004 — All rights reserved

INTERNATIONAL STANDARD I SO/WD 10303-29

Industrial automation systems and integration —

Product data representation and exchange —

Part 29: Implementation methods: XML encoding of the
exchange structure of product data defined by an Application
Protocol

1 Scope

This part of 1SO 10303 specifies an exchange structure format using a XML encoding of product data
defined by an Application Protocol. The exchange format is suitable for the transfer of data conforming
to acomplete Application Protocol, and for the transfer of data conforming to one or more Application
Objectsin an Application Protocol.

2 Normativereferences

The following normative documents contain provisions which, through reference in thistext, constitute
provisions of this part of 1SO 10303. For dated references, subsequent amendments to, or revisions of,
any of these publications do not apply. However, parties to agreements based on this part of 1SO 10303
are encouraged to investigate the possibility of applying the most recent editions of the normative doc-
uments indicated below. For undated references, the latest edition of the normative document referred
to applies. Members of 1SO and IEC maintain registers of currently valid International Standards.

ISO/IEC 8824-1:1998, Information technology — Abstract Syntax Notation One (ASN.1): Specifica-
tion of basic notation.

SO 10303-1:1994, Industrial automation systems and integration — Product data representation and
exchange — Part 1. Overview and fundamental principles.

SO 10303-11:1994, Industrial automation systems and integration — Product data representation and
exchange — Part 11: The EXPRESS language reference manual.

Uniform Resource Identifiers (URI): Generic Syntax. Internet Engineering Task Force RFC 2396
August 1998 [cited 2000-08-07]. Available from World Wide Web: <http://www.ietf.org/rfc/
rfc2396.txt>.

URN Syntax. Internet Engineering Task Force RFC 2141 May 1997 [cited 2000-09-28]. Available
from World Wide Web: <http://www.ietf.org/rfc/rfc2141.txt>.

©I1S0 2004 — All rights reserved 1

| SO/WD 10303-29

Extensible Markup Language (XML) 1.0. World Wide Web Consortium Recommendation 10 February
1998 [cited 2000-04-26]. Available from World Wide Web: <http://www.w3.org/TR/1998/REC-xml-
19980210>.

Namespaces in XML. World Wide Web Consortium Recommendation 14 January 1999 [cited 2000-
04-26]. Available from World Wide Web: <http://www.w3.0org/TR/1998/REC-xml-19990114>.

XML Information Set World Wide Web Consortium Candidate Recommendation 24 October 2001
[cited 2003-05-12]. Available from World Wide Web: <http://www.w3.org/TR/xml-infoset>.

XML Linking Language (XLink) Version 1.0. World Wide Web Consortium Candidate Recommenda-
tion 3 July 2000 [cited 2000-08-08]. Available from World Wide Web: <http://www.w3.org/TR/2000/
CR-xlink-20000703>.

XML Path Language (X path) Version 1.0. World Wide Web Consortium Recommendation 16 Novem-
ber 1999 [cited 2003-05-12]. Available from World Wide Web: <http://www.w3.org/TR/xpath/>.

XML Pointer Language (Xpointer) Version 1.0. World Wide Web Consortium Recommendation 8 Jan-
uary 2001 [cited 2004-01-19]. Available from World Wide Web: <http://www.w3.0org/TR/WD-
xptr.html/>.

XML Schema Part 1: Structures. W3C Recommendation, 2 May 2001 [cited 2002-08-01]. Available
from World Wide Web: < http://www.w3.org/TR/xmlschema-1/>.

XML Schema Part 2; Datatypes. W3C Recommendation, 2 May 2001 [cited 2002-08-01]. Available
from World Wide Web: < http://www.w3.org/TR/xmlschema-2/>.

3 Termes, definitions, and abbreviations

3.1 Termsdefined in SO 10303-1
This part of 1SO 10303 makes use of the following terms defined in 1SO 10303-1.

— application protocol,

— application object;

— application interpreted model;
— application requirements model;
— exchange structure;

— mapping path.

2 ©IS0 2004 — All rights reserved

| SO/WD 10303-29
3.2 Termsdefined in 1SO 10303-11

This part of 1SO 10303 makes use of the following terms defined in 1SO 10303-11.
— complex entity instance;

— datatype;

— entity;

— partial complex entity instance;

— simple entity instance.

3.3 Termsdefined in XML Standards

Terms defined in the XML Standards and used for the purposes of this part of 1SO 10303 are repeated
below for convenience.

— XML eement;
— XML attribute;

— XML document.

3.4 Other definitions

For the purposes of this part of 1SO 10303, the following definitions apply.

34.1
XML encoding
the encoding of information using XML.

34.2
M ost specific defined type
the outermost type in a sequence of nested type definitions.

3.5 Abbreviations
For the purpose of this part of 1SO 10303, the following abbreviations apply.
URI Uniform Resource Identifier

URN Uniform Resource Name

©IS0 2004 — All rights reserved 3

| SO/WD 10303-29

XML Extensible Markup Language
AIM Application Interpreted Model
ARM Application Requirements Model

4 Exchange structure fundamental concepts and assumptions

4.1 Introduction

The exchange structure is described by an XML syntax. All of the data in the exchange structure shall
belong to the name spaces defined in the header element 7.2.5. Any data not in these name spaces shall
be ignored.

NOTE Users that want to mix STEP and non-STEP data can put the non-STEP data into a different
namespace.

4.2 Notational and typographical conventions

Any quotation marks used in this part of 1SO 10303 are not part of the text that appears in the exchange
structure but serve to delimit that text. This statement applies to all places in the text where quotation
marks are used.

Within examples in this part of 1SO 10303, an annotation is introduced by the sequence ----> where
clarification isrequired.

4.3 Conformance
Three levels of conformance are specified in the six conformance classes listed in clause 11:

— syntactical conformance of the exchange structure: an exchange structure conforms to 1SO
10303-29if it iswell formed XML and the requirements of this part of 1SO 10303 are satisfied;

— application protocol conformance of the exchange structure: the instances represented in the
exchange structure represent a complete instance of the AIM schema of the Application Protocol
listed in the header element of the exchange structure if every requirement or constraint of that
schemais satisfied and the requirements defined in clauses 8, 9 and 11 of this part of 1SO 10303
are satisfied.

— application object conformance of the exchange structure: the instances represented in the
exchange structure conform to the requirements defined by the mapping tables for the application
objects of the Application Protocol listed in the header element of the exchange structure and the
requirements defined in clauses 8, 10 and 11 of this part of 1SO 10303 are satisfied.

4 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

An implementation that claims syntactical conformance to this part of 1SO 10303 shall read or write
documents or both that exhibit syntactical conformance.

An implementation that claims application protocol conformance to this part of 1SO 10303 shall read
or write documents or both that exhibit application protocol aswell as syntactical conformance.

An implementation that claims application object conformance to this part of 1SO 10303 shall read or
write documents or both that exhibit application object aswell as syntactical conformance.

5 Formal definitions

5.1 Exchange structure

The exchange structure shall shall consist of a header element and one or more data elements. The
header provides data relating to the exchange structure itself. The structure of the header element is
specified in clause 7. The data elements provide the data to be transferred. The structure of the dataele-
mentsis specified in clause 8. The header element and data el ements are embedded in larger XML doc-
uments.

The element "<1S010303-29>" shall contain the Header of an exchange structure.

The element "<AIM>" shall contain a subset of the population of the AIM data of an exchange struc-
ture.

The element "<ARM>" shall contain a subset of the population of the ARM data of an exchange struc-
ture.

NOTE The header and data elements can be embedded in SOAP envelopes and other XML infrastructure.

6 Basic Tokens
In the exchange structure, a basic token is a keyword or a simple data type.
6.1 Keywords

Keywords aretokensindicating an application object, attribute, defined type, entity or mapping path in
the exchange structure.

6.1.1 Entity and Defined Type Keywords

Entity and Defined Type keywords shall be defined by the application interpreted model of the Appli-
cation Protocol and consist of one upper case letter, followed by lower case letters, digits and low
lines.

©IS0 2004 — All rights reserved 5

| SO/WD 10303-29
6.1.2 Attribute Keywords

Attribute keywords shall be defined by the application interpreted model of the Application Protocol
and consist of one lower case |etter, followed by lower case letters, digits and low lines.

6.1.3 Application Object Keywords

Application Object keywords shall be defined by the mapping table of the Application Protocol and
consist of one upper case letter followed by upper case letters, digits and low lines.

6.1.4 Application Object Attribute Keywords

Application Object Attribute keywords shall be defined by the mapping table of the Application Proto-
col and shall consist of one lower case letter followed by lower case letters, digits and low lines.

6.2 Simple data type encodings

Eight simple data type encodings are used in exchange structures. integer, real, string, entity instance
identifier, restricted entity instance identifier, entity instance reference, enumeration, and binary.

6.2.1 Integer

An integer shall be encoded as prescribed in XML.

EXAMPLE
Valid integer expressions Meaning
16 Positive 16
+12 Positive 12
-349 Negative 349
012 Positive 12
00 Zero
Invalid integer expressions Problem
2654 Contains spaces
32.0 Contains full stop
+12 Contains space between plus sign and digits
6.2.2 Real

A real shall be encoded as prescribed by XML.

NOTE No attempt is made to convey the concept of precision in this part of 1ISO 10303. Where a precise
meaning is necessary, the sender and receiver of the exchange structure should agree on one. Where a precise

6 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

meaning is required as part of the description of an entity data type, this meaning should be included in the entity
data type definition in the EXPRESS schema.

EXAMPLE
Valid real expressions Meaning
+0.0E0 0.0
-0.0E-0 0.0, as above example
15 15
-32.178E+02 -3217.8
0.25E8 25 million
0.E25 0.0
2. 2.0
5.0 5.0
Invalid real expressions Problem

1.2E3. Decimal point not allowed in exponent

1EQ05 Decimal point required in mantissa

1,000.00 Comma not allowed

3.E Digit(s) required in exponent

5 At least one digit must precede the decimal point
6.2.3 String

A string shall be encoded as prescribed by XML.

EXAMPLE
Valid string expressions Meaning
Abc Abc
Abc dEf Abc dEf
+0.0EO +0.0EO
Invalid real expressions Problem

6.2.3.1 Maximum string length

The maximum length of a string is as prescribed by XML.

©IS0 2004 — All rights reserved 7

| SO/WD 10303-29

6.2.4 Entity Instanceidentifiers

A entity instance identifier shall be encoded as a upper letter, lower letter or lowline, followed by a
sequence of upper letters, lower letters, digits, periods, low lines and hyphens.

EXAMPLE
Valid identifier expressions Meaning
id 12 Names entity instance with identifier id_12
inches Names entity with identifier inches
English-inches Names entity with identifier English-inches
B00.1 Names entity with identifier BOO.1
Invalid identifier expressions Problem
A+23 Contains '+' sign
74 Beginswith adigit
#inches Begins with a number sign

Entity instance identifers are used to reference the instance with the identifier. Both forward and back-
ward references are permitted.

6.2.5 Restricted Entity Instance identifiers

A restricted entity instance identifier is an entity instance identifer that begins with the string "id-" fol-
lowed by one or more digits.

EXAMPLE
Valid restricted identifier expressions Meaning

id-12 Names entity instance with identifier id-12
id-90 Names entity with identifier id-90

Invalid restricted identifier expressionsProblem

inches Identifier does not begin with the string "id-"
id-inches The"id-" is not followed by a sequence of digits.

Restricted entity instance identifiers are required by Conformance Classes 1 and 2 (Clause 11.)
6.2.6 Entity Instancereferences

A entity instance reference shall be encoded as a URL which includes a fragment identifier. |If no doc-
ument is given in the URL then the entity instance shall exist in the same document as the referencing

8 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

instance. The fragment identifier shall identify the entity instance in the document using its entity inst-
nace identifier.

EXAMPLE
Valid reference expressions Meaning

http://www.abc.com/filexml#id_12 References entity instance with identifier id_12
stored in thefile "filexml" at the web site www.abc.com

another_file.stp#id-10 References entity instance with restricted identifier id-10
stored in thefile "another_file.stp"
#English-inches References entity with identifier English-inches

in the same file as the referencing instance.

Invalid reference expressions Problem

6.2.7 Enumeration values

An enumeration value shall be encoded as an upper case string describing the value of the enumeration.
The meaning of a given enumeration value is determined by the EXPRESS schema and its associated
definitions from the enumeration type declarations.

EXAMPLE
TYPE Material = ENUMERATION OF (steel); END_TYPE;
Valid enumeration expression Meaning
STEEL Indicates avalue of STEEL

Invalid enumeration expressions Problem

.STEEL Beginning full stop

Steel Wrong case

IRON Not defined in the EXPRESS.
6.2.8 Binary

A binary isasequence of bits (0 or 1). A binary shall be encoded as determined by the following proce-
dure.

— count the number of bits in the sequence. Call the result p;

— determine anumber n, 0 < n < 3, such that k=p+n isa multiple of four;

©IS0 2004 — All rights reserved 9

| SO/WD 10303-29

— left fill the binary with n zero bits. Divide the sequence into groups of four bits.

— precede the sequence with the 4-bit representation of n;

— if the decimal equivalent of a 4-bit group is 9 or less, add 48 to that decimal value to create an 8-
bit byte; if the decimal equivalent of the 4-bit group is greater than 9, add 55 to that decimal value
to create an 8-bit byte.

NOTE Thisisabinary to hexadecimal conversion.

— theencoding of abinary consists of k/4+1 hexadecimal digits. The first digit isthe value of n. This
is followed by the hexadecimal digits representing the binary;

EXAMPLE
Binary value Representation
‘empty’ 0
0 30
1 31
111011 23B
100100101010 092A

7 Header element

The header element contains information that is applicable to the entire exchange structure. This sec-
tion shall be present in every exchange structure. If a document contains more than one header element
then each header element shall have an id attribute that uniquely identifies the header element.

NOTE Annex H presents an example of a header section.

7.1 Header section entities
The header section of every exchange structure shall contain one instance of each of the following enti-

ties: exchange description, exchange name, exchange schema, exchange population and
exchange_space.

7.2 Header section schema

This clause specifies entities and types that appear in the header element of the exchange structure.
The header entities are specified in EXPRESS.

EXPRESS Specification:

)

10 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

SCHEMA header _section_scheng;
(*

This schema specifies the header entities that are specific to the process of transferring product data
using the exchange structure.

7.2.1 exchange description

The exchange_description specifies the version of this part of 1SO 10303 used to create the exchange
structure as well asits contents.

EXPRESS Specification:

*)
ENTI TY exchange_descri ption;

description : LIST [1:?] OF STRING
i mpl enentation_level : STRING
END_ENTI TY;

(*

Attribute Descriptions:

description: aninformal description of the contents of this exchange structure.

implementation_level: an identification of the specification to which the encoding in this exchange
structure conforms and any conformance options employed in that encoding. The form of the value is
"v;cc", where v is the version number of this part of 1SO 10303, as specified in annex C, and cc isthe
encoding of conformance class as specified in Section 11.

7.2.2 exchange name

The exchange_name provides human readable information about the exchange structure. With the
exception of the time_stamp attribute, the contents of the attributes of this entity are not defined by this
part of 1SO 10303.

EXPRESS Specification:

*)
ENTI TY exchange_nane;

name : STRING

time_stanp © time_stanp_text

aut hor D LIST] 1: ?] OF STRING
organi zation S LIST] 1: ?] OF STRING

preprocessor_version : STRI NG

originating system : STRING

aut hori zati on : STRING
END_ENTI TY;

TYPE tine_stanp_text = STRING

©IS0 2004 — All rights reserved 11

| SO/WD 10303-29

END_TYPE;
(*

Attribute Descriptions:

name: the string of graphic characters used to name this particular instance of an exchange structure.

NOTE The nameisintended to be used as human to human communication between sender and receiver.

time_stamp: the date and time specifying when the exchange structure was created. The contents of
the string shall correspond to the extended format for the complete calendar date as specifiedin 4.2.1.1
of 1SO 8601 concatenated to the extended format for the time of the day as specified eitherin4.3.1.1 or
in 4.3.3 of ISO 8601. The date and time shall be separated by the capital letter T as specifiedin 4.4.1 of
SO 8601. The alternate formats of 4.3.1.1 and 4.3.3 permit the optional inclusion of atime zone spec-
ifier.

author: the name and mailing address of the person responsible for creating the exchange structure.
organization: the group or organization with whom the author is associated.

preprocessor_version: the system used to create the exchange structure, including the system product
name and version.

originating_system: the system from which the datain this exchange structure originated.

authorization: the name and mailing address of the person who authorized the sending of the
exchange structure.

EXAMPLE
Time stamp element Complete extended format
Cdendar Date
12 April 1993 1993-04-12
Time of the Day
27 minutes 46 seconds 15:27:46
past 15 hours
Time Zone Time Zonefield is optional
5 hours west of Greenwich -05:00

Above date and time encoded
within the Time_Stamp field 1993-04-12T15:27:46-05:00

12 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

7.2.3 exchange schema

The exchange _schema entity identifies the Application Protocol that defines the data sections using
the name of the EXPRESS schema that defines the Application Interpreted Model of the protocol. The
attribute schema_identifier shall consist of a string that shall contain the name of the schema option-
aly followed by the object identifier assigned to that schema.

If the name of a schema contains small letters, such small letters shall be converted to the correspond-
ing capital letters. Only capital letters shall occur in strings of the schema_name.

If an object identifier is provided, it shall have the form specified in ISO/IEC 8824-1. The use of object
identifiers within this International Standard is described in clause 3 of SO 10303-1. When available,
the use of the object identifier is recommended as it provides unambiguous identification of the
schema.

NOTE The general form of an object identifier is a sequence of space-delimited integers. The sequenceis
enclosed within braces ("{", "}").

EXPRESS Specification:

*)

ENTI TY exchange_schens;
schema_identifier : schema_nang;

END_ENTI TY;

TYPE schena_nanme = STRI NG
END_TYPE;

(*

Attribute Descriptions:

schema_identifier: the schema name of the Application Interpeted model of the Application Protocol
that defines the data elements.

EXAMPLE The instance below identifies an EXPRESS schema called 'CONFIG_CONTROL_DESIGN':

EXCHANGE_SCHEMA ((CONFIG_CONTROL_DESIGN'));

The instance below uses an object identifier to indicate a specific version of an EXPRESS schema called
'AUTOMOTIVE_DESIGN":

EXCHANGE_SCHEMA ((AUTOMOTIVE_DESIGN { 101030321411 1}");
7.2.4 exchange population
The exchange_population entity identifies a collection of documents containing the data el ements of
the exchange structure, and a collection of documents containing other entity instances referenced by

those data elements. An entity instance reference in an exchange structure shall reference entity
instances in these documents only.

©IS0 2004 — All rights reserved 13

| SO/WD 10303-29

EXPRESS Specification:

*
)
ENTI TY exchange_popul ati on;
i ncl uded_exchange_| ocati ons :
resour ce_exchange_| ocations :
END_ENTI TY;

c
= =

SET[1:
SET[1:

R AR

TYPE docunent _url = STRI NG
END_TYPE;

(*

Attribute Descriptions:

included_exchange locations: the URL'sfor XML documents containing data elements that are to be
included in the exchange structure. If the URL has afragment identifier then only the data element ref-
erenced by the identifier is included. If no fragment identifier is given then every data element in the
document shall be included.

resource_exchange locations. the URL's for XML documents and 1SO 10303-21 files containing
entity instances that may be included in the exchange structure (see clause 8). If the URL addresses an
XML document and has afragment identifier then the only the XML element referenced by theid shall
be included. If the URL addresses a|SO 10303-21 file then the fragment identifier shall be arestricted
entity instance identifier (see 6.2.5) and only the entity instance addressed by the identifier shall be
included.

NOTE 1 If the externa reference "examplexml#id-10" is used to describe an entity instance reference then
"examplexml" must be one of the documents in the exchange population entry.

NOTE 2 The exchange_population entry allows a pre-processor to find and cache all of the documents and SO
10303-21 files containing data that may be used in an exhange structure at the beginning of aread process.

NOTE 3) Resource documents can be used to defined libraries of entity instances for reuse across multiple appli-
cation protocols. Application Protocol developers may wish to consider establishing a library for al of the con-
stants used in a protocol so that exchange structures can reference these constants using a URL defined by the
Application Protocol standard.

NOTE 3) Resource files can be used to share geometry data between | SO 10303-203 processors that use the Part
21 format and new processors that use the Part 29 format.

7.2.5 exchange space

The exchange_space entity identifies the names spaces of the data in the exchange structure. If no
name spaces are given then the exchange structure shall be limited to XML elements in the exchange
population that belong to the default name space. If one or more name spaces are given then the
exchange structure shall be limited to XML elements in the exchange population that belong to the
given name spaces.

14 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

EXPRESS Specification:

*)
ENTI TY exchange_space;

urn_identifiers : LIST [0:?] OF urn_nane;
END_ENTI TY;

TYPE urn_name = STRI NG
END_TYPE;

(*

Attribute Descriptions:

urn_name: the XML urn definition of a name space.

EXAMPLE The instance below identifies a name space for STEP data:

<exchange_space
<urn_identifiers>
<Urn_name>urn:iso10303:stp/www.tc184-sc4/STEP</Urn_name>
<urn_identifiers>
<exchange_space>

8 Exchange Structure Population

8.1 Included Documents
Two types of data el ements may be included in the exchange structure:

- An AIM element contains entity instances defined by the AIM EXPRESS model of the Applica-
tion Protocol.

- An ARM element contains mapping path instances describing how application objects defined by
the Application Protocol are represented by entity instances in the AIM elements of the exchange
structure.

A data element may be referenced by multiple URL’s in the exchange _population entry but it shall be
included in the exchange structure once only.

If aURL in the exchange population entry includes a fragment identifier then only the data element
identified by that identifier shall be included in the exchange structure.

NOTE1 The Header element can be stored in the same document as its Data elements or in different docu-

ments. Some applications may choose to modularize the data by storing related ARM and AIM elements in the
same exchange. Other applications may choose to include all their datain one AIM element only.

©IS0 2004 — All rights reserved 15

| SO/WD 10303-29

NOTE 2 If two URL'sinthe exchange population entry reference the same document and one URL includes
afragment identifier and the other URL does not include afragment identifier then every data element in the doc-
ument shall beincluded in the exchange structure.

NOTE3 AnARM element does not define any entity instances. An ARM element defines data that allows an
exchange processor to verify that an Application Object instance has been represented correctly within the
exchange structure without checking the whole exchange structure.

8.1.1 AIM Elements

An AIM element shall be used to encode entity instances belonging to the exchange structure. Each
entity instance shall be mapped as specified in Section 9. Each entity instance shall be represented at
most once in the exchange structure. The entity instances need not be ordered in the exchange struc-
ture. An entity instance may be referenced before it is defined.

EXAMPLE

<AIM>

<Pt id="id-14">
<x>1.0</x>
<y>2.0</y>
<z>3.0</z>
</Pt>

</AI.M>
8.1.2 ARM Elements

An ARM element shall be used to store mapping paths defining how instances of application objects
are encoded in the exchange structure. Each application object instance shall be mapped as specified in
10.

EXAMPLE

<ARM>

<POINT>
<xcoordinate>
<Pt href="examplexml#id-14"/>
<X/>
</xcoordinate>
<ycoordinate>
<Pt href="examplexml#id-14"/>
<y/>
</ycoordinate>
</POINT>

16 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

</ARM>;

NOTE 1 Application Objects do not have instance names.

NOTE 1 The representation of Application Objects allows processes to verify that they are encoded correctly
in an exchange structure or afragment of an exchange structure. Therefore, libraries of correctly encoded Appli-
cation Objects can be stored in databases for reuse across multiple applications.

8.2 Resource elements

The resource documents and files define a library of entity instances that are to be included in the
exchange structure only if they are referenced by another entity instance or application object instance
aready inthat structure.

A resource document shall be encoded as well formed XML.
A resource file shall be encoded as 1SO 10303-21.

If the resourceis an XML document then the document shall be searched for an XML element with an
Id attribute whose value is the entity instance identifier stored in the referencing entity. The entity
instance shall be encoded using the rules described in Section 9. If theresourceisidentified by a URL
with afragment identifier then only the element identified by that fragment shall be searched. Elements
in the resource document that are not identified by this procedure may use any encoding allowed by
well formed XML.

If the resource is an 1SO 10303-21 file then the referencing entity must contain a restricted entity
instance identifier and the 1SO 10303-21 file shall be searched for the entity instance with that identi-
fier. The entity instance shall be encoded using the rules described in 1SO 10303-21 and must conform
to the EXPRESS schema identified by the header element. If the resource isidentified by a URL with a
fragement identifier then only the entity instance identified by that fragment shall be searched. Entity
instances in the resource file that are not identified by this procedure may be defined by any EXPRESS
schema.

8.3 Exchange Structure Population

8.3.1 Entity Instance Population

The entity instance population of an exchange structure shall include al of the entity instancesin all of
the AIM elementsin the exchange structure, and all of the entity instances in the resource el ements ref-
erenced by the AIM elements or ARM elements either directly or transitively.

8.3.2 Application Object Population

The application object instance population of an exchange structure shall include all of the application
objectsin al of the ARM elementsin the exchange structure.

©IS0 2004 — All rights reserved 17

| SO/WD 10303-29

9 Mapping of Entity I nstances to the exchange structure

This clause describes how entity instances described by the Application Interpreted Model are mapped
to the exchange structure.

The Application Interpreted Model of an Application Protocol is described by an EXPRESS schema.
This clause describes how entity instances are mapped by describing how each feature of the
EXPRESS language is mapped to the exchange structure

The EXPRESS language includes TYPE and ENTITY declarations, CONSTANT declarations, con-
straint specifications and algorithm descriptions. Only instances of datatypes, as defined by EXPRESS
datatypesand TYPE and ENTITY declarations, are mapped to the exchange structure. Other elements
of the language are not mapped to the exchange structure.

NOTE SO 10303-28 describes a mapping of the EXPRESS language to XML Schema. The relationship
between this schema and the mapping described in this clause is described by a configuration of 1SO 10303-28.

9.1 Mapping of EXPRESS data types

This clause specifies the mapping from the EXPRESS elements that are data types to the exchange
structure.

9.1.1 Mapping of EXPRESS simple data types

9.1.1.1 Integer

Values of the EXPRESS data type INTEGER shall be mapped to the exchange structure as an integer
datatype. 6.2.1 describes the composition of an integer data type..

9.1.1.2 String

Values of the EXPRESS data type STRING shall be mapped to the exchange structure as a string data
type. 6.2.3 describes the composition of a string data type.

9.1.1.3 Boolean

Values of the EXPRESS data type BOOLEAN shall be mapped to the exchange structure as an enu-
meration data type. 6.2.7 describes the composition of a enumeration data type. The EXPRESS data
type BOOLEAN shall be treated as a predefined enumerated data type with a value encoded as the
strings "true” or "false". These values shall correspond to true and fal se respectively.

9.1.1.4 Logical

Values of the EXPRESS data type LOGICAL shall be mapped to the exchange structure as an enumer-
ation data type. 6.2.7 describes the composition of a enumeration data type. The EXPRESS data type
LOGICAL shall be treated as a predefined enumerated data type with a value encoded as the strings

"true", "false" or "unknown". These values shall correspond to true, false, and unknown respectively.

18 ©IS0 2004 — All rights reserved

9.1.1.5 Real

Table 5 - Quick reference mapping table

EXPRESS element mapped onto:
ARRAY aggregate
BAG aggregate
BOCOLEAN bool ean
Bl NARY bi nary
CONSTANT NO | NSTANTI ATl ON
DERI VED ATTRI BUTE NO | NSTANTI ATl ON
ENTI TY entity instance
ENTI TY AS ATTRI BUTE entity val ue
ENUMERATI ON enuneration
FUNCTI ON NO | NSTANTI ATl ON
| NTEGER i nt eger
| NVERSE NO | NSTANTI ATI ON
LI ST aggregate
LOd CAL enuneration
NUMBER real
PROCEDURE NO | NSTANTI ATI ON
REAL real
REMARKS NO | NSTANTI ATI ON
RULE NO | NSTANTI ATI ON
SCHENA NO | NSTANTI ATl ON
SELECT See 11.1.8
SET aggregate
STRI NG string
TYPE See 11.1.6
UNI QUE rul e NO | NSTANTI ATl ON
WHERE RULES NO | NSTANTI ATl ON

| SO/WD 10303-29

Values of the EXPRESS data type REAL shall be mapped to the exchange structure as area datatype.
6.2.2 describes the composition of areal datatype.
EXAMPLE Entity definition in EXPRESS:

ENTITY widget;

i1: INTEGER; ----------- > A
i2. INTEGER; ----------- > B
sl: STRING(3); ----------- > C
s2: STRING; ----------- >D

| : LOGICAL; ------mmmm- > E
b:BOOLEAN; ----------- >F
rl: REAL(4); ----------- > G
r2: REAL; ----------- > H
END_ENTITY;

Sampleinstance in the data section:

<Widget id="id-30">
<i1>99</i1>
<i2>99999</i2>

©IS0 2004 — All rights reserved 19

| SO/WD 10303-29

<s1>ABC</s1>

<s2>ABC EFG</s2>

<I>unknown</I>

false

<r1>9.</r1>

<r2>1.2345</r2>
</Widget>

A: ilhasavalue of 99 in this entity instance.
B: 2 hasavaue of 99999 in this entity instance.

C: sl hasavalue of '"ABC' in this entity instance. This value falls within the range (3 characters) specified for
this attribute.

D: s2hasavalueof 'ABC EFG' in this entity instance.

E: | hasavaue of unknown in this entity instance.

F. bhasavaue of fasein thisentity instance.

G: rlhasthevalueof 9. in this entity instance. The precision specification does not affect the encoding.
H: r2hasavaue of 1.2345 in this entity instance.

NOTE Theexamplein this section describes the XML elements for each attribute in the order defined in the
EXPRESS example. However, no attribute order is defined in the EXPRESS language or this part of 1SO 10303.

9.1.1.6 Binary

Values of the EXPRESS data type BINARY shall be mapped to the exchange structure as a binary data
type. 6.2.8 describes the composition of abinary datatype.

EXAMPLE Entity definition in EXPRESS:

ENTITY picture;
bn: BINARY;
END_ENTITY;

Sample entity instance in data section:

<Picture id="example">
<bn>1556FB0</bn>
</Picture>

bn has an encoding of "1556FB0" in this instance, corresponding with the bit sequence 101 0101 0110 1111 1011 00QO.

20 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

9.1.1.7 Number

Values of the EXPRESS data type NUMBER shall be mapped to the exchange structure as areal data
type. 6.2.2 describes the composition of areal datatype.

9.1.2 Aggregates

Values of type LIST, BAG, SET and ARRAY shall be mapped as aggregates. The member of the aggre-
gate shall be mapped asfollows:

If the member of the aggregate is an entity instance then is shall be mapped as described in 9.2

- If the member of the aggregate is simple data type then it shall be mapped as an XML element
with the name of the keyword of the type described in 6.1 and the XML content described in 9.1.1

- If the member is a simple defined type, enumerated type or select type then it shall be mapped as
an XML element with the name of the keyword of the type described in 6.1 and the XML content
described in 9.1.3, 9.1.4, 9.1.5 respectively.

- If the member of the aggregate is another aggregate and no defined type has been defined in the
EXPRESS to represent this aggregate then the member shall be encoded as an element called
<Aggregate>.

9.1.2.1 Unset Valuesin aggregates

If an aggregate contains an unset item then the XML element in the list that represents the unset item
shall have an XML attribute called unset whose value shall be set to "true".

NOTE EXPRESS only allows array aggregates to contain unset items. However, an exchange structure that
contains unset items in other kinds of aggregates can be in syntactic conformance with this part of 1SO 10303

9.1.22 List

Values of the EXPRESS data type LIST shall be mapped to the exchange structure as an aggregate. If
the LIST is empty, the list shall be encoded as an XML element with no content. Within the list, each
instance of the element type shall be encoded as specified in clause 9 for that EXPRESS data type.

NOTE If, in aparticular entity instance, no value is provided for an OPTIONAL attribute whose data type is
aLIST, then the attribute is encoded either by setting the unset attribute of the XML element representing the list
to "true", or by not including any XML element for the OPTIONAL attribute in the exchange structure.

EXAMPLE Entity definition in EXPRESS:

ENTITY widget;
attributel: LIST [0: 7] OF INTEGER; ----------------- >A
attribute2: LIST [1: 7] OF INTEGER; ----------------- >B

©IS0 2004 — All rights reserved 21

| SO/WD 10303-29

attribute3: OPTIONAL LIST [1: 7] OF INTEGER; -------- >C

attribute4: LIST [1: 7] OF LIST [0: 7] OF REAL; ---->D

attribute5: OPTIONAL LIST OF STRING; ----------=-----= SE
END_ENTITY;

Sampl e entity instance in data section:;

<Widget id="id-10">

<attributel/>

<attribute2>
<Integer>1</Integer>
<Integer>2</Integer>
<Integer>4</Integer>

</attribute2>

<attribute4>

<aggregate>
<Real>1.0</Real>
<Real>2.56</Red >
</aggregate>
<aggregate/>
<aggregate>
<Real>6.4</Real>

</aggregate>
</attributed>
<attribute5 unset="true"/>
<Widget>

A: attributel isan empty list (list with zero elements).
B: attribute? contains three elements in this instance.
C: attribute3 does not have avaluein this instance.

D: attribute4 contains three nested lists in this instance. The first nested list contains two €l ements. The second
nested list contains zero elements. The third nested list contains one element.

E: attribute5 does not have avalue in this instance.

NOTE The XML example in this section are describing the XML elements for each attribute in the order
defined in the EXPRESS example. However, no attribute order is defined in the EXPRESS language or this part
of 1SO 10303.

9.1.2.3 Array

Values of the EXPRESS data type ARRAY shall be mapped to the exchange structure as aggregates. If
an EXPRESS attribute is amultidimensional array the attribute shall be encoded as alist of lists, nested
as deeply asthere are dimensions. In constructing such lists, the inner-most list, the list containing only
instances of the element type, shall correspond to the right-most ARRAY specifier in the EXPRESS
statement defining the entity. The ordering of the elements within the encoding shall be that all the ele-
ments of the inner-most list are encoded for each element of the next outer list. This order means that
the right-most index in each list shall vary first. Within the list, each instance of the element type shall
be encoded as specified in clause 9 for that EXPRESS data type.

22 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

NOTE If, in aparticular array item no value is provided then the absence of the value can be shown using the
unset attribute of the XML element representing the item.

EXAMPLE1 Entity definitionin EXPRESS:
X : ARRAY[1:5] OF ARRAY[100:102] OF INTEGER
Thisis encoded in the following order:

((X [1,100], X [1,101], X [1,102]),
(X [2,100], X [2,101], X [2,102]),
(X [3,100], X [3,101], X [3,102]),
(X [4,100], X [4,101], X [4,102]),
(X [5,100], X [5,101], X [5,102]))

EXAMPLE 2 Entity definition in EXPRESS:

ENTITY widget;

attributel: ARRAY [-1: 3] OF INTEGER; ------------=========- >A

attribute2: ARRAY [1:5] OF OPTIONAL INTEGER; -------=====-- >B

attribute3: ARRAY [1: 3] OF OPTIONAL ARRAY [1:3] OF INTEGER; ------ >C
END_ENTITY;

Sample entity instance in data section:

<Widget id="id-30">
<attributel>
<Integer>1</Integer>
<Integer>2</Integer>
<Integer>3</Integer>
<Integer>4</Integer>
<Integer>5</Integer>
</attributel>
<attribute2>
<Integer>1</Integer>
<Integer>2</Integer>
<Integer unset="true"/>
<Integer/>
<Integer>5</Integer>
</attribute2>
<attribute3>
<Aggregate>
<Integer>1</Integer>
<Integer>2</Integer>
<Integer>3</Integer>
</Aggregate>
<Aggregate unset="true"/>
<Aggregate>
<Integer>4</Integer>
<Integer>5</Integer>
<Integer>6</Integer>
</Aggregate>
</attribute3>
</Widget>

A: attributel contains the following values:

©IS0 2004 — All rights reserved 23

| SO/WD 10303-29

attributel [-1] =1
attributel [0] =2
atributel [1] =3
attributel [2] =4
attributel [3] =5

B: attribute2 contains the following values:

atribute2 [1] =1
attribute? [2] = 2
attribute? [3] = not provided
atribute [4] = not provided
attribute2 [5] =5

The significance of amissing value is defined within the EXPRESS schema.

C: attribute3 contains the following values:

atribute3[1,1] =1
attribute3 [1,2] =2
attribute3 [1,3] =3
atribute3 [2] = not provided
attribute3 [3,1] =4
attribute3 [3,2] =5
attribute3 [3,3] =6

EXAMPLE 3Entity definition in EXPRESS:

ENTITY widget;
attributel: ARRAY [1: 3] OF OPTIONAL ARRAY [1: 3] OF OPTIONAL STRING; ------ >C
END_ENTITY;

Sample entity instance in data section:

<Widget id="id-30">
<attributel>
<Aggregate> <I--A-->
<String>John</String>
<String unset="true"/>

<String/>
</Aggregate>
<Aggregate unset="true"/> <l--B-->
<Aggregate/> <l--C-->
</attributel>

</Widget>

A: Inthefirst row the second item hasits "unset" XML attribute set to "true" so its value is unset, and the third
itemis set to the empty string.

B: The second row isunset which islegal because the nested array is OPTIONAL.
C: The third row is set to an empty content. Syntactically this is correct. However, the row is incorrect with

respect to the EXPRESS because the array bounds are [1:3] so the third row should either be unset or it should
contain another instance of the underlying aggregate with three items (not zero) defined.

24 ©IS0 2004 — All rights reserved

| SO/WD 10303-29
9.1.24 Set

Values of the EXPRESS data type SET shall be mapped to the exchange structure as aggregates.
Within the aggregate, each instance of the element type shall be encoded as specified in clause 9 for
that EXPRESS data type. If the SET is empty, the list shall be encoded as an XML element with no
content.

NOTE If, in aparticular entity instance, no value is provided for an OPTIONAL attribute whose data type is
a SET, the attribute is encoded either by setting the unset attribute of the XML element representing the list to
"true", or by not including any XML element for the OPTIONAL attribute in the exchange structure.

EXAMPLE Entity definition in EXPRESS:

ENTITY widget;
a number: SET OF INTEGER;
END_ENTITY;

Sample entity instance in data section:

<Widget id="A">
<a_number>
<Integer>0</Integer><Integer>1</Integer><Integer>2</Integer>
</a_number>
</Widget>
<Widget id="B">
<a_number>
<Integer>0</Integer><Integer/><Integer>2</Integer>
</a_number>
</Widget>
<Widget id="C">
<a_number>
<Integer>0</Integer><Integer>0<Integer/><Integer>2</Integer>
</a_number>
</Widget>

A: Theattribute a_number was defined by the set numbers O, 1, 2 in thisinstance.

B: Syntactically the instance is correct. However, the instance is incorrect with respect to the definition of a
SET in EXPRESS because a SET is not allowed to have missing members.

C: Syntactically the instance is correct. However, the instance is incorrect with respect to the definition of a
SET in EXPRESS because a SET is not allowed to have duplicate members.

9.1.2.5 Bag

Values of the EXPRESS data type BAG shall be mapped to the exchange structure as aggregates.
Within the aggregate, each instance of the element type shall be encoded as specified in clause 9 for
that EXPRESS data type. If the BAG is empty, the list shall be encoded as an XML element with no
content.

©IS0 2004 — All rights reserved 25

| SO/WD 10303-29

NOTE If, in a particular entity instance, no value is provided for an OPTIONAL attribute whose data type is a
BAG the attribute is encoded by setting the unset attribute of the XML element representing the list to "true”, or
by not including any XML element for the OPTIONAL attribute in the exchange structure.

EXAMPLEERtity definition in EXPRESS:

ENTITY widget;
a_numbers: BAG OF INTEGER,;
END_ENTITY;

Sampl e entity instance in data section:;

<Widget id="A">
<a_numbers>
<Integer>0</Integer><Integer>1</Integer><Integer>1</Integer><Integer>2</Integer>
</a_numbers>
</Widget>
<Widget id="B">
<a_number>
<Integer>0</Integer><Integer/><I nteger>2</Integer>
</a_number>
</Widget>

A: Theattribute a numbers was defined by the collection of numbers 0, 1, 1, 2 in thisinstance.

B: Syntactically, the instanceis correct. However, the instance is incorrect with respect to the definition of BAG
in EXPRESS because a BAG is not allowed to have missing members.

9.1.3 Simple defined types

A simple defined type is atype defined by an EXPRESS type declaration in which the underlying type
is neither an ENUMERATION nor a SELECT. If the defined typeisused in an aggregate or SELECT
then an XML element shall be generated for each instance of the type using the keyword of the type.

EXAMPLE Entity definition in EXPRESS:

TYPE
typel = INTEGER,;
END_TYPE;

TYPE

type2 = typel;
END_TYPE;

TYPE
type3 =LIST [1: 2] of type2;
END_TYPE;

ENTITY widget;

al: TYPEL;

a2 LIST OF TYPEL
a3 TYPE3;
END_ENTITY;

Sampl e entity instance in data section:;

26 ©IS0 2004 — All rights reserved

I SO/WD 10303-29
<Widget id="4">
<al>10</al>
<a2><Typel>20</Typel><Typel>30</Typel></a2>

<a3><Type2>40</Type2></a3>
</Widget>

al: No element isnecessary for the type.

a2: Typel isthe outermost type for the members of thelist so it is used to name the XML element for each item.

a3: Type2 the outermost type for the members of the list so it is used to name the XML element for each item.

9.1.4 Enumeration types

Values of an EXPRESS ENUMERATION data type shall be mapped to the exchange structure as an
enumeration data type. 6.2.7 describes the composition of a enumeration data type.

EXAMPLE Entity definition in EXPRESS:

TYPE
primary_colour = ENUMERATION OF (red, green, blue);
END_TYPE;

ENTITY widget;

p_colour: primary_colour; = --------------- >A
END_ENTITY;

Sample entity Instance in data section:

<Widget id="A">
<p_colour>RED</p_colour>
</Widget>

A: Thevalue of the attribute p_colour in this entity instance is RED.

9.1.5 Select datatypes

An EXPRESS select data type defines a list of data types, called the "select-list", whose values are
valid instances of the select datatype. An instance of a select data type shall be avalue of at |east one
of the data types in the select-list. The value shall be encoded in the exchange structure as determined
by the following procedure:

— if the value is an instance of an entity data type in the select-list, it shall be mapped to the
exchange structure as an entity instance reference element (see 9.1.6);

— if the value is an instance of a simple defined type in the select-list, it shall be mapped to the
exchange structure as specifiedin 9.1.3;

— if the valueis an instance of an enumeration data type in the select-ligt, it shall be mapped to the
exchange structure as as specifiedin 9.1.3;

©IS0 2004 — All rights reserved 27

| SO/WD 10303-29

— if thevalueisan instance of a (nested) select datatype in the select-lit, it shall be mapped to the
exchange structure as an instance of that select type as provided in this clause;

— if thevalueisaninstance of a (nested) select datatype in the select-list, and the result of the map-
ping is ambiguous because the branch of the select used to determine the underlying value is
meanignful and cannot be determined from the type of the result then the outermost type of the
select-branch used for thisvalue shall be addded to an XML attribute of the element called path. If
there are multiple namesin the path they shall appear in the order outemost to innermost.

NOTE 1 If the data type (in the select-list) which the value instantiates is itself a select data type, then this
clause will be used recursively to encode the value. Only instances of entity data types, simple defined types and
enumeration data types can actually be encoded (see Example 2).

NOTE 2 According to SO 10303-11:1994, an instance of a subtype of an entity data type is an instance of the
entity datatype. So "an instance of an entity data type in the select list" includes instances of subtypes of those
entity data types.

NOTE 3 If the entity datatypesin the select-list are not mutually exclusive, then a value of the select data type
may instantiate more than one entity data type in the select-list (see Example 1).

NOTE 4 |If thevaueis not an entity instance, it is an instance of exactly one simple defined-type or enumera-
tion data type. The value may, however, be a valid instance of several (nested) select data types and thereby
instantiate more than one type in the original select-list (see Example 2).

EXAMPLE1 Entity definitionin EXPRESS:

ENTITY Leader SUBTY PE OF (Employeg);
project: STRING;
END_ENTITY;

ENTITY Manager SUBTY PE OF (Employee);
unit: STRING;
END_ENTITY;

ENTITY Employee;
name: STRING;
END_ENTITY;

TY PE Supervisor = SELECT (Manager, L eader);
END_TYPE;

ENTITY Mesting;

date: STRING;

attendees: SET [2:7] OF Supervisor;
END_ENTITY;

Sampl e data section instances:

<Meeting id="id-4">
<date>14921012</date>
<attendees>

28 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

<Leader id="id-1">
<name>J. Brahms</name>
<project>Academic Festival</project>

</Leader>

<Manager id="id-2">
<name>S. Ozawa</name>
<unit>Tokyo Symphony</unit>

</Manager>

<L eader-Manager id="id-3">
<name>G. Verdi</name>
<project>Aida</project>
<unit>La Scala</unit>

</Leader-Manager>

<attendees>
</Meeting>

The second attribute of instance id-4 is the attendees: a SET OF Supervisor. Instance id-1 is a Leader and thus a
valid Supervisor. Instanceid-2 is a Manager and thus a valid Supervisor. Instance id-3 is a complex instance of
both (entity) types Leader and Manager from the select-list of Supervisor. All are mapped according to 9.1.6.

EXAMPLE 2 Entity definition in EXPRESS:

TYPE Mass= SELECT (Mass_Spec, Mass_Substitute);
END_TYPE;

TYPE Mass_Spec = SELECT (Measured_Mass, Computed_Mass, Estimated M ass);
END_TYPE;

TYPE Measured_Mass= REAL;
END_TYPE;

TY PE Computed_Mass = Extended_Real;
END_TYPE;

TYPE Estimated_Mass = REAL;
END_TYPE;

TYPE Mass_Substitute = SELECT (Weight, Estimated_Mass);
END_TYPE;

TYPE Weight = REAL;
END_TYPE;

TY PE Extended_Real = SELECT (FloatingNumber, NotaNumber);
END_TYPE;

TY PE FloatingNumber = REAL(7);
END_TYPE;

TY PE NotaNumber = ENUMERATION OF (plus_infinity,
minus_infinity, indeterminate, invalid);
END_TYPE;

ENTITY Steel_Bar;
bar_length: Extended_Resl;

bar_mass. Mass,
END_ENTITY;

Sampleinstantiation in data section:

©IS0 2004 — All rights reserved 29

| SO/WD 10303-29

<Steel_bar id="id-1" >
<bar_length><Floatingnumber>77.0</Floatingnumber></bar_length>
<bar_mass><Measured_mass>13.25</M easured_mass></bar_mass>
</Steel_bar>

<Steel_bar id="id-2" >
<bar_mass><Estimated_mass>13.25</Estimated_mass></bar_mass>
<bar_length><Notanumber>INDETERMINATE</Notanumber></bar_length>
</Steel _bar>

<Steel_bar id="id-3" >
<bar_length><Floatingnumber>77.0</Floatingnumber></bar_length>
<bar_mass>
<Floatingnumber path="Computed_mass"'>13.25</Floatingnumber>
</bar_mass>
</Steel_bar>

The first attribute of instance id-1 represents an Extended Real value that is a FloatingNumber. It is mapped to
the exchange structure, following 9.1.3 for FloatingNumber, as a value of the simple type REAL.

The second attribute of instance id-1 represents a Measured_Mass value, which is avalid Mass_Spec value and
therefore avalid Mass value. It is mapped (by recursive application of 9.1.5, since Massis a select data type and
Mass Spec isaselect datatype) asaMeasured_Mass, as avalue of the simple type REAL.

Thefirgt attribute of instance id-2 represents an Estimated Massvalue. Thisisavalid Mass_Spec value and also
avalid Mass_Subsgtitute value and therefore a valid value of Mass. This value actually instantiates both (select)
datatypesin the select-list of Mass.

The second attribute of instance id-2 represents an Extended Real value that is a NotaNumber value.
Thefirst attribute of instance id-3 is the same as the first attribute of instance #1.

The second attribute of instance id-3 represents a Computed Mass value, which is avalid Mass_Spec value and
therefore avalid Mass value. It is mapped (by recursive application of 9.1.5, since Massis a select data type and
Mass Spec is a select data type) as Computed mass (the simple defined type in the select-list). The value of
Computed Mass is an Extended Real value. Extended Red is a select data type so a path attribute value is
added to show that it was derived from a Computed _mass.

9.1.6 Entity Instancereference e ement

A entity instance reference e ement shall be encoded as an XML element with the name of entity type
referenced. The XML element shall contain a single XML attribute called href and this attribute shall
be used to store the value of the Entity instance reference. There shall be no element content. The entity
instance addressed by the reference shall be EXPRESS type compatible with the entity type named by
the element.

EXAMPLE

Valid reference element Meaning

30 ©IS0 2004 — All rights reserved

<Point href="#id-12">
<Point href="filexml#id-12">

<Point href="file.stp#id-10">

Invalid reference expressions
<Point href="other_file.xml">
<point href="#id-12">

| SO/WD 10303-29

References entity instance with identifier id-12

The instance must be a Point or a type compatible with Point
References entity instance with identifier id-12 in document file.
that must be an instance of point or atype compatible with Point
References entity instance with identifier id-12 stored in

in the ISO 10303-21 "file.stp". The instance must be a point or
type compatible with Point.

Problem
Fragment identifier missing
XML element does not have the name of an entity

<Point href="#id-12", unset="true"> XML element has an attibute other than href

9.1.7 Entity Instancereference e ement short form

If an explicit attribute of an entity is defined by an entity type and the value of that attribute is defined
by an entity instance reference element then a short form may be used to encode the reference. The
short form shall move the href XML attribute of the entity instance reference element into the XML
element representing the XML attribute and delete the entity instance reference element.

EXAMPLE
Valid short reference element
<centre href="#id-12">
<end href="filexml#id-12">

<knot href="file.stp#id-10">

Invalid short reference expressions
<point href="other_filexml">
<Point href="#id-12">

Meaning

References entity instance with identifier id-12

The instance must be type compatible with the centre attribute
References entity instance with identifier id-12 in document file.
The instance must be type compatible with the centre attribute
References entity instance with identifier id-12 stored in

in the ISO 10303-21 "file.stp”. The instance must be with the knot
attribute.

Problem
Fragment identifier missing
XML element does not have the name of an attribute

<point href="#id-12", unset="true"> XML element has an attibute other than href

EXAMPLE XML elements coded using short form

<Product_definitionid ="id-1">
<id>EXAMPLE</id>
<description/>
<formation href="#id-2"/>
<Product_definition/>
<Product_definition_formation id="id-2">
<id>A</id>
<description>version 1</description>
<of_product href="#id-3">

©IS0 2004 — All rights reserved

31

| SO/WD 10303-29

</product_definition>
<Product id="id-3">

<id>1</id>

<name>widget</name>

<description/>

<frame_of_reference/>
</Product>

9.2 Mapping of EXPRESS entity data types

An instance of an EXPRESS entity data type shall be mapped to the exchange structure as an
ENTITY_INSTANCE.

As defined by 1SO 10303-11:1994, a "simple entity instance” is an entity instance that is not an
instance of a subtype of any entity data type. All other entity instances are caled "complex entity
instances'. A simple entity instance shall be mapped as specified in 9.2.1. A complex entity instance
shall be mapped as specified in 9.2.5.

NOTE A simple entity instance is an entity instance which is completely described by a single EXPRESS
entity-declaration. A complex entity instance is an instance whose description involves more than one entity-dec-
laration, even when only one of them contains explicit attributes. A simple entity instance can be an instance of a
supertype, aslong asit is not an instance of any subtype, but an instance of a subtype is always "complex".

Only the explicit attributes of an EXPRESS entity are mapped to the exchange structure. Special pro-
visions apply to OPTIONAL explicit attributes (see 9.2.2), explicit attributes whose values are entity
instances (see 9.2.4), and all redeclarations of explicit attributes (see 9.2.6, 9.2.7, and 9.2.8)

Each explicit attribute shall be mapped as an XML element whose name is defined by the keyword for
that attribute. If the XML element has the href attribute then the value of the explicit attribute is
described by an entity reference and the element shall have no other attributes and no XML content. If
the XML element has content then it shall not have any XML attributes.

The order of the XML elements representing the attributes is not defined by EXPRESS or this part of
SO 10303.

If no valueis given for an attribute then the absense of a value shall be indicated by not including any
XML content for that attribute in the exchange structure or by including XML content and setting the
unset XML attribute of that content to the value "true”.

NOTE 1 Morethan one such provision may apply to the same attribute.
NOTE 2 If an application that wants to include additional XML content (el ements or attributes) in an exchange

structure it should put that content in a name space that is not part of the exchange structure as defined in the
Header element (see 7.2.5.)

9.2.1 Mapping of a simple entity instance

A simple entity instance shall be mapped as an XML element in the exchange structure. The name of
the XML element shall be mapped to the keyword defined for the entity as specified in 6.1.1.

32 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

Each explicit attribute shall be mapped directly to anested XML element. If the EXPRESS entity data
type has no explicit attributes, then the content of the XML element shall be empty.

NOTE If the XML element representing the entity has no content for an explicit attribute then the exchange
structure is not in syntactic conformance. If the XML element has content for an explicit attribute but the XML
element representing the attribute has no content then the exchange structure is in syntactic conformance but not
AIM or ARM conformance.

EXAMPLE Definition in EXPRESS:

TYPE

primary_colour_abbreviation = ENUMERATION OF (r, g, b);
END_TYPE;

ENTITY widget; > A

attributel: INTEGER; ------------=-------- >B

attribute2: STRING; ------------=-=mnmn- > C

attribute3: LOGICAL ; --------=--==---=--= > D

attributed: BOOLEAN; -------------------— > E

attributeb: REAL; -----------mmnmmmmemeaae > F

attribute6: LIST [1: 2] of LOGICAL; ----> G
attribute7: ARRAY [-1:0] of INTEGER; ---> H
attribute8: PRIMARY _COLOUR_ABBREVIATION; -> |
END_ENTITY;

Sampleinstance in the data section:

<Widget id="id-30">
<attributel>1</attributel>
<attribute5>1.0</attribute5>
<attribute2>ABC</attribute2>
<attributed4>true</attribute4>
<attribute3>unknown</attribute3>
<attribute6><L ogi cal >true</L ogi cal><L ogical>fal se<L ogi cal ></attribute6>
<attribute7><Integer>1</Integer><Integer>0</Integer></attribute7>
<attribute8>R</attribute8>
</Widget>

A: The EXPRESS entity name widget is mapped to the WIDGET standard keyword of the data section entity.
B: attributel has avalue of 1in this entity instance.

C: attribute2 has avalue of ABC in this entity instance.

D: attribute3 has avalue of unknown in this entity instance.

E: attributed has avalue of truein this entity instance.

F. attribute5 has avalue of 1.0 in this entity instance.

G: attribute6 isalist of logicasin this entity instance. The list values are:

ATTRIBUTES(1) = true

©IS0 2004 — All rights reserved 33

| SO/WD 10303-29

ATTRIBUTES(2) = false

H: attribute 7 isan array of integersin this entity instance. The array values are;

1
0

ATTRIBUTE7(-1)
ATTRIBUTE7(0)

I: Attribute 8 is an enumeration. The attribute contains a value of R.

9.2.2 Mapping of OPTIONAL explicit attributes

The XML element representing an explicit attribute that is declared to be OPTIONAL is not required to
have any XML content. When the optional value is supplied, it shall be the content of the element and
encoded according to the data type of the attribute, as specified in clause 9.

If the XML element representing an OPTIONAL attribute has the unset attribute set to "true" then the
value of the entity instance attribute shall be unset. Any content defined for the XML element repre-
senting the entity instance attribute must still be syntactically correct.

EXAMPLE Entity definition in EXPRESS:

ENTITY xxx;
attributel: REAL;
attribute2: REAL;

END_ENTITY;

ENTITY yyy; --------mmemmmoeeemeeee > A
attributel: OPTIONAL LOGICAL; ----- > B
attribute2; Xxx; ----------------- > C
attribute3: XXX; ----------------- >D
attributed: OPTIONAL INTEGER,; ----- > E
attribute5: OPTIONAL REAL; ------- > F

END_ENTITY;

Sampl e entity instances in data section:;

<Yyyid="id-3">
<attribute2>
<Xxx href="#id-2"/>
</attribute2>
<attrbute3>
<Xxx id="id-1">
<attributel>1.0</attributel>
<attribute2>2.0</attribute2>
</Xxx>
</attribute3>
</Yyy>
<Xxx id="id-2">
<attributel>1.0</attributel>
<attribute2>2.0</attribute2>
</Xxx>

A: The EXPRESS entity name yyy is mapped to the Yyy standard keyword of the data section entity.

34 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

B: attributel does not have avalue in this entity instance.

C: attribute2 isaan xxx entity with entity instance #2.

D: attribute3 is areference to the xxx entity with entity instance #1.
E: attributed does not have avalue in this entity instance.

F. attribute5 does not have avalue in this entity instance.

NOTE When an aggregate or string attribute is defined by an XML element with no content the value of that
attribute is set to empty. The XML attribute unset allows this default to be overriden.

9.2.3 Mapping of derived attributes

The derived attributes of an entity shall not be mapped to the exchange structure. When a derived
attribute in a subtype redeclares an attribute in a supertype, the mapping used shall be as described in
9.2.6.

9.2.4 Mapping of attributes whose values are entity instances

If an entity instance is specified as an attribute of a second (referencing) entity instance, the first (refer-
enced) entity instance shall be mapped to the exchange structure as XML content (see 9.1) or as an
entity instance reference element (see 9.1.6).

If the value is mapped as a referenced entity instance, then the referenced entity instance shall be a
member of the entity instance population (see 8.3.1). Only one instance in the population shall contain
an entity instance with thisidentifier. The name of the document containing the instance shall be conis-
dered to part of the identifier. If no document name is given in the reference then the URL of the cur-
rent document shall be considered to be part of the identifier. The definition may precede or follow the
use of the entity instance identifier as an attribute. The definition need not occur within the same data
element or the same document as the entity instance reference element.

EXAMPLE Entity definition in EXPRESS:

ENTITY yyy;
x : REAL;

y : REAL;

z: REAL;
END_ENTITY;

ENTITY xxx;
PO yyy; -------m------ > A

Pl: yyy; ---e-mmeemees > B
END_ENTITY;

Sampl e entity instances:

<Xxx id="id-2">
<p0>

©IS0 2004 — All rights reserved 35

| SO/WD 10303-29

<Yyy href="#id-1"/>
</p0>
<pl>
<Yyy id="id-1">
<x>1.0</y>
<y>2.0</y>
<z>2.0</z>
</Yyy>
</pl>
</Xxx>

EXAMPLE Datain two documents:

<AIM>

<Xxx id="id-2">
<p0 href="abc.xml#id-1"/>
<pl>
<Yyy id="id-1">
<x>1.0</y>
<y>2.0</y>
<z>2.0</z>
</Yyy>
</pl>
</Xxx>

</AIM>
Sample instance in resource document abc.xml

<Yyy id="id-1">
<x>10.0</y>
<y>20.0</y>
<z>30.0</z>
</Yyy>

EXAMPLE Referenced datain a SO 10303-21 file:

<AIM>

<Xxx id="id-2">
<p0 href="abc.stp#id-1"/>
<pl>
<Yyy id="id-1">
<x>1.0</y>
<y>2.0</y>
<z>2.0</z>
</Yyy>
</pl>
</Xxx>

</AIM>
Sample instance in resource file abc.stp

#1= YY'Y(10.0, 20.0, 30.0);

36 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

9.2.5 Entitiesdefined as subtypes of other entities

ISO 10303-11 defines instances of an entity having a SUBTYPE clause to be "complex entity
instances', in that they may involve attributes from more than one entity-type declaration. This sub-
clause specifies how complex entity instances are mapped to the exchange structure.

Complex entity instances shall be mapped to the exchange structure using one of two mapping rules,
internal mapping or external mapping. One mapping rule applies to each instance of a subtype entity.

NOTE 1 The selection of mapping depends on the entity instance rather than the entity type. It is possible for
different instances of the same entity data type to use different mappings, depending on whether they are
instances of subtypes and which subtypes they instantiate.

NOTE 2 This subclause applies only to complex entity instances. It does not necessarily apply to every
instance of a supertype entity. In particular, it does not apply to an instance of a supertype that is not an instance
of any subtype. Such instances may exist if the supertype is not an abstract supertype and is not itself a subtype
of some other entity. Such instances are mapped as provided in 9.2.1.

9.2.5.1 Default selection of mapping

A set of entity datatype definitionsthat are linked by subtype and implicit or explicit supertype expres-
sions define a set of complex entity instance structures, referred to as the evaluated set in annex B of
SO 10303-11. Each member of the evaluated set specifies alist of entity data type names.

Each particular instance of an entity data type corresponds to one member of the evaluated set. The
mapping that may be applied to a particular instance depends on the member of the evaluated set to
which it corresponds.

To determine the mapping rules to apply to a given entity instance:

a) determinethelist of entity datatype names that are included in the evaluated set member that cor-
responds to the entity instance;

b) identify fromthelist all entity-types that have no subtypes and all entity-types that may have sub-
types but for which none of the subtypes appears in the list (evaluated set member) for this
instance. The result of the evaluation isthe pruned evaluated set;

c) if the pruned evaluated set only contains one entity data type, this entity-type is referred to as the
"leaf entity data type" and the internal mapping shall be used. Otherwise the external mapping
shall be used.

NOTE Atleast oneentity datatype will be identified in step b above.

©IS0 2004 — All rights reserved 37

| SO/WD 10303-29

9.2.5.2 Internal mapping

If the internal mapping is used, the entity instance shall encode the values of the inherited explicit
attributes of all supertype entities and the explicit attributes of the leaf entity data type.

This procedure may result in a supertype entity being referenced more than once. In this case all refer-
ences after the first one shall be ignored.

EXAMPLE1 Anexample of asimple subtype/supertype relationship. Entity definition in EXPRESS:

ENTITY aa ABSTRACT SUPERTY PE OF (ONEOF(bb,cc)); ------ > A
attrib_a: zz; > B
END_ENTITY;

ENTITY bb SUBTY PE OF (a3)

ABSTRACT SUPERTY PE OF (ONEOF(XX)); ------------ > C
attrib_b1: yy; >D
attrib_b2: yy; > E
END_ENTITY;

ENTITY cc SUBTY PE OF (aa);
attrib_c : REAL,;
END_ENTITY;

ENTITY xx SUBTY PE OF (bb);
attrib_x: REAL; > F
END_ENTITY;

ENTITY zz;
attrib_z : STRING;
END_ENTITY;

ENTITY yy;
attrib_1: REAL;
END_ENTITY;

Sampl e entity instances:

<Zzid="i1">
<attrib_z>ZATTR</attrib_z>

<Zz>

<Yyid="i2">
<attrib_1>1.0</attrib_1>

</Yy>

<Yy id="i3">
<attrib_1>2.0</attrib_1>

</Yy>

<Xx>
<attrib_bl1><Yy href="#i2"/></attrib_b1>
<attrib_b2><Yy href="#i3"/></attrib_b2>
<attrib_a><Zz href="#i1"/></attrib_a>
<attrib_x>4.0</attrib_x>

<IXx>);

A: Because entity aais an abstract supertype it does not map to the exchange structure.

38 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

B: The attribute attrib_a will map as an inherited attribute in an entity that is directly or indirectly subtyped to
the aa entity. In this case, attrib_ais represented by the first attribute of the instance of xx, and refersto zz, entity
instanceil.

C: Because entity bb is an abstract supertype it will not map to the exchange structure.

D: Theattribute attrib_b1 will map as an inherited attribute in an entity that is directly or indirectly subtyped to
the bb entity. In thiscase, attrib_b1 is represented by the second attribute of the instance of entity xx, and refersto
yy, entity instance i2.

E: The attribute attrib_b2 will map to the data section as an inherited attribute in an entity that is directly or
indirectly subtyped to the bb entity. In this case, attrib_b2 is represented by the third attribute of the instance of
entity xx, and refersto yy, entity instance #3.

F. Attributeattrib_x isrepresented by itsvalue 4.0.

EXAMPLE 2 Anexample of the mapping of a supertype that is not an ABSTRACT supertype. Entity defini-
tion in EXPRESS:

ENTITY aa SUPERTY PE OF (ONEOF(bb,dd)); --> A
attrib_a: STRING;
END_ENTITY;

ENTITY bb SUBTY PE OF (aa); --------------- >B
END_ENTITY;

ENTITY cc SUBTYPE OF (bb); -------------- > C
attrib_c: INTEGER,;
END_ENTITY;

ENTITY dd SUBTY PE OF (aa); -------------- > D
attrib_d : REAL;
END_ENTITY;

ENTITY ee; > E
attrib_e: aa;
END_ENTITY;

Sampl e entity instances:

<Aaid="i1">
<attrib_a>SAMPLE STRING</attrib_a>
</Aa>
<Ddid="i3">
<attrib_a>XY Z</attrib_a>
<attrib_d>99.99</attrib_d>
<Dd>
<EEid="i5">
<attrib_e>
<Aahref="#i1"/>
</attrib_e>
</Ee>
<EEid="i6">
<attrib_e>
<Bbid="i2">
<attrib_a>ABC</attrib_a>

©IS0 2004 — All rights reserved 39

| SO/WD 10303-29

</Bb>
<[attrib_e>
</Ee>
<EEid="i7">
<attrib_e>
<Ccid="i3">
<attrib_a>DEF</attrib_a>
<attrib_c>123</attrib_c>
</Cc>
<[attrib_e>
</Ee>
<EEid="i8">
<attrib_e>
<Aahref="#i4"/>
</ettrib_e>
</Ee>

A: Sinceit was not an abstract supertype, the supertype entity aa can be instantiated in an exchange structure.
Note that it contains only its attrib_a attribute when it is instantiated.

B: The entity bb is a subtype of aa and therefore its instances will contain the attributes of both aa and bb, but
since entity bb does not define any attributes the parameter list will only contain attrib_a.

C: Theentity ccisasubtype of bb and therefore its instances will contain the attributes of aa, bb, and cc.
D: Theentity dd is a subtype of aa and thereforeits instances will contain the attributes of both aa and dd.

E: Theentity eereferences entity aa as an attribute. Therefore, an instance of entity ee may reference or contain
any of #1, #2, #3 or #4.

EXAMPLE 3 Anexample of the mapping of an entity with multiple supertypesin the SUBTY PE OF expres-
sion. Entity definition in EXPRESS:

ENTITY base SUPERTY PE OF (branch_one,branch_two); ---> A
attrib_a: STRING;
END_ENTITY;

ENTITY branch_one SUBTY PE OF (basg); ----------------- > B
attrib_b : INTEGER,;
END_ENTITY;

ENTITY branch_two SUBTY PE OF (basg); ---------------- >C
attrib_c: BOOLEAN;
END_ENTITY;

ENTITY leaf SUBTY PE OF (branch_one, branch_two); ----> D
attrib_d : REAL;
END_ENTITY;

Sample entity instance in data section:

<Baseid="id-A">

<attrib_a>SAMPLE STRING</attrib_a>
</Base>
<Branch_oneid="id-B">

40 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

<attrib_a>ABC</attrib_a>
<attrib_b>123</attrib_b>
</Branch_one>
<Branch_two id="id-C">
<attrib_a>DEF</attrib_a>
<attrib_c>true</attrib_c>
</Branch_two>
<Leaf id="id-D">
<attrib_a>XY Z</attrib_a>
<attrib_b>123</attrib_b>
<attrib_c>true</attrib_c>
attrib_d>99.99</attrib_d>
</Leaf>

A: Entity base has no supertypes. When instantiated in an exchange structure, it will contain only a value for
the attrib_a attribute.

B: The entity branch_one is a subtype of base. When instantiated in an exchange structure, it will contain the
inherited attributes of base and the attributes of branch_one.

C: The entity branch_two is a subtype of base. When instantiated in an exchange structure, it will contain the
inherited attributes of base and the attributes of branch_two.

D: Theentity leaf isa subtype of branch_one and branch_two. When instantiated in an exchange structure, will
contain the inherited attributes of branch_one, which includes the attributes of base, and the inherited attributes
of branch_two and the attributes of leaf. The attributes of base are only written once.

9.2.5.3 External mapping

The external mapping shall be used if the pruned evaluated set contains more than one member. A
complex entity instance shall be formed containing all the attributes of the members of the pruned eval-
uated set. A name shall be formed for the complex entity instance by joining the names of the entity
instances in the set in a phabetical order using hyphens"-".

EXAMPLE1 Anexample of the mapping of subtypes related by ANDOR.
Entity definition in EXPRESS:

ENTITY aa SUPERTY PE OF (bb ANDOR cc); --> A
attrib_a: STRING;
END_ENTITY;

ENTITY bb SUBTY PE OF (aa); -------------- > B
attrib_b : INTEGER,;
END_ENTITY;

ENTITY cc SUBTYPE OF (8a); ------------- > C
attrib_c: REAL;
END_ENTITY;

ENTITY dd; > D
attrib_d : aa;
END_ENTITY;

©IS0 2004 — All rights reserved 41

| SO/WD 10303-29

Sampl e entity instances:

<Bbid="id-A">
<attrib_b>15</attrib_b>
<attrib_a>sample string</attrib_a>
</Bb>
<Ccid="id-B>
<attrib_a>S</attrib_a>
<attrib_c>3.0</attrib_c>
<Cc>
<AaBb-Ccid="id-C">
<attrib_a>ASTRID</attrib_a>
<attrib_b>17</attrib_b>
<attrib_c>4.0</attrib_c>
</Aa-Bb-Cc>
<Ddid="id-D1">
<attrib_d>
<aahref="#id-1"/>
</attrib_b>
</Dd>
<Ddid="id-D2">
<attrib_d>
<aahref="#id-2"/>
<[attrib_b>
</Dd>
<Ddid="id-D3">
<attrib_d>
<aahref="#id-3"/>
</attrib_b>
</Dd>
<Aaid="id=E">
<attrib_a>ABC</attrib_a>
</Aa>

A: id-1isaninstance of aaand bb combined.
B: id-2isan instance of aa and cc combined.
C: id-3isaninstance of aa, bb and cc combined.

D: The entity dd references entity aa as an attribute. Therefore, an instance of entity dd may legally reference
any of id-1, id-2 or id-3.

E: Thenon-abstract supertype aa can be instantiated, and the internal mapping applies because the evaluated set
contains only one member.

EXAMPLE2 Anexample of the mappings of a more complicated subtype/supertype graph. Entity definition
in EXPRESS:

ENTITY x;
attrib_x : INTEGER;
END_ENTITY;

ENTITY aABSTRACT SUPERTY PE OF(ONEOF(b,c)); --> A
attrib_a: x > B
END_ENTITY;

42 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

ENTITY b SUPERTY PE OF(d ANDOR €)
SUBTY PE OF (a);
attrib_b : REAL; ------m--mmmmmmmemee > B
END_ENTITY;

ENTITY ¢ SUBTYPE OF (a); --------------------- > C
attrib_c: REAL;
END_ENTITY;

ENTITY d SUBTYPE OF (b); --------------------- > D
attrib_d : x;
END_ENTITY;

ENTITY e ABSTRACT SUPERTY PE
SUBTYPE OF (b); ----------=--=--m--m- > A
attrib_e: x; > B
END_ENTITY;

ENTITY f SUPERTY PE OF (h);
attrib_f : x; > B
END_ENTITY;

ENTITY g SUBTYPE OF (g); --------------------- > E
attrib_g : INTEGER;
END_ENTITY;

ENTITY h SUBTYPE OF (&f); ~-rerreememeemer > E
attrib_h : INTEGER;
END_ENTITY;

A: Since entity a and e are abstract supertypes they cannot occur on the exchange structure as independent
instances.

B: Sinceattrib_a, attrib_b, attrib_e and attrib_f are attributes of supertype entities, they will be mapped as inher-
ited attributes if a subtype is mapped using the internal mapping. They will be mapped as attributes of the com-
plex instance if a subtype is mapped using the external mapping.

C: Sinceentity c participatesin an ONEOF operation and its supertype participates in no supertype operation, it
will use the internal mapping.

D: Themapping of d will depend on the structure of the pruned evaluated set in which it appears.

E: Since entities g and h both have a supertype (entity €) that participates in an ANDOR operation. their map-
ping will depend on the structure of the pruned evaluated set in which they appear.

EXAMPLE 3 Anentity instance showing internal mapping.

<Cid="id-2">
<attrib_c>2.0</attrib_c>
<attrib_a>
<X id="id-1">
<attrib_x>1</attrib_x>
</X>
</attrib_a>
</C>

©IS0 2004 — All rights reserved 43

| SO/WD 10303-29

A: Theevauated set of 'id-2' is[c & a]. The pruned evaluated set is[c] and therefore uses the internal mapping.

EXAMPLE4 Entity instance showing internal mapping:

<Did="id-2">
<attrib_c>2.0</attrib_c>
<attrib_a>
<X id="id-1">
<attrib_x>1</attrib_x>
</X>
</attrib_a>
<attrib_d>
<X id="id-4">
<attrib_x>1</attrib_x>
</X>
</attrib_d>
</D>

A: Theevaluated set of id-2 is[a& b & d] and the pruned evaluated set is[d] so it isinternally mapped.
B: Theattribute of awith name attrib_aisinherited by entity data type d.

C: attrib_b isinherited by entity data type d.

D: attrib_disdefined in entity datatype d.

EXAMPLES Entity instance showing external mapping:

<D-H id="id-2">
<attrib_a>
<X id="id-1">
<attrib_x>1</attrib_x>
</X>
<[attrib_a>
<attrib_b>9.0</attrib_b>
<attrib_c>2.0</attrib_c>
<attrib_d>
<X href="#id-1">
</attrib_d>
<attrib_e>
<X href="#id-1">
<[attrib_e>
<attrib_f>
<X href="#id-1">
<[attrib_f>
<attrib_h>4</attrib_h>
</D>

A: Since entity instance id-2 has the evaluated set [a& b & d & e & f & h] and the pruned evaluated set has
more than one leaf (d and h), the external mapping is used.

44 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

9.25.4 Attributeswith the same name.

An entity instance can have inherit two or more attributes with the same name. In the internal mapping
one of the attributes may be defined locally and the other may be inherited from a super-type, or both
of the atttributes may be inherited from (different super-types). In the external mapping two or more of
the typesin the pruned evaluated set may define attributes with the same name.

If an entity instance has two or more attributes have the same name then each shall be qualified with
the name of the entity that definesthat attribute. The qualification shall consist of the name of the entity
followed by the period character "." and the name of the attribute. The qualified name shall be used to
define the name of the XML element that represents the attribute in the exchange structure.

EXAMPLE1 Anexample of the mapping of subtypes with conflicting attributes related by ANDOR.

Entity definition in EXPRESS:

ENTITY aa SUPERTY PE OF (bb ANDOR cc); --> A
attrib_a: STRING;
END_ENTITY;

ENTITY bb SUBTY PE OF (8a); -------------- >B
attrib_sn: INTEGER,;
END_ENTITY;

ENTITY cc SUBTYPE OF (8a); ------------- >C
attrib_sn : REAL;
END_ENTITY;

ENTITY dd SUBTYPE OF (bb, CC); ------------- >C
altrib_sn : BOOLEAN;
END_ENTITY;

Sample entity instance in data section:

<Bbid="id-A">
<attrib_sn>15</attrib_sn>
<attrib_a>sample string</attrib_a>

</Bb>

<Ccid="id-B>
<attrib_a>S</attrib_a>
<attrib_sn>3.0</attrib_sn>

<Cc>

<Aa-Bb-Ccid="id-C">
<attrib_a>ASTRID</attrib_a>
<Bb.attrib_sn>17</Bb.attrib_sn>
<Cc.attrib_sn>4.0</Cc.attrib_sn>

</Aa-Bb-Cc>

<Ddid="id-D">
<attrib_a>ASTRID</attrib_a>
<Bb.attrib_sn>17</Bb.attrib_sn>
<Cec.attrib_sn>4.0</Cc.attrib_sn>
<Dd.attrib_sn>true</Dd.attrib_sn>

</Aa-Bb-Cc>

A: only one attribute has the name attrib_sn.

©IS0 2004 — All rights reserved 45

| SO/WD 10303-29

B: only one attribute has the name attrib_sn.

C: two typesin the pruned evaluated set described attributes with the name attrib_sn so they are each qualified
with the name of the entity that defines the attribute.

D: entity dd inherits two attributes with the name attrib_sn and also defines alocal attribute with that name. All
three attributes are qualifed with the name of their defining entity type.

9.2.6 Explicit attributesredeclared as DERIVEd

If a subtype entity redeclares an attribute of its supertype using the DERIVE clause then there is no
effect on the encoding. The redeclared attribute is not encoded in anyway.

EXAMPLE Entity definition in EXPRESS:

ENTITY point;
X : REAL;
y : REAL;
z: REAL;
END_ENTITY;

ENTITY point_on_curve SUBTY PE OF (point);
u: REAL;
C: Ccurve;
DERIVE
SEL F\point.x : real := fx(u, c);
SELR\point.y : rea :=fy(u, ¢);
SELFR\point.z : real :=fz(u, c);
END_ENTITY;

ENTITY curve;
attr : STRING;
END_ENTITY;

Sample entity instance in data section

<Point_on_curveid="i1">
<u>0.55</u>
<c>
<Curveid="i2">
<attr>curve_attribute</curve>
</Curve>
</c>
<Point_on_curve>

9.2.7 Attributesredeclared asINVERSE

If a subtype entity redeclares an attribute of its supertype using the INVERSE clause, there is no effect
on the encoding. The redeclared attribute is not encoded in any way.

46 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

9.2.8 Attributesredeclared as explicit attributes

If a subtype entity redeclares an attribute of one of its supertypes as an explicit attribute then it shall be
encoded using the rules defined for its redeclared type as specified in 9.2.5, applying the mapping spec-
ified in clause 9 for the redeclared data type of the attribute.

EXAMPLE Entity definition in EXPRESS:

ENTITY asa SUPERTY PE OF (ONEOF (bbb, ccc));
al :NUMBER;
a2 :curve

INVERSE
a3 : SET OF mmm FOR m1;

END_ENTITY;

ENTITY bbb SUBTY PE OF (aaa);
SELRaaa.al : INTEGER;
b - REAL;
END_ENTITY;

ENTITY ccc SUBTY PE OF (aaa);
SELRaaaa2 : line;
INVERSE
SELRaaa.a3 : SET [1:2] OF mmm FOR mi1,
END_ENTITY;

ENTITY curve;
EN D_ENTITY;
ENTITY line SUBTY PE OF (curve);
EN D_ENTITY;

ENTITY mmm;
ml :aag
END_ENTITY;

Sampleinstantiation in data section:

<Lineid="i1">

</Line>
<Curveid="i2">

</Curve>
<Bbbid="i3">
<al>1.0</al>
<a2>
<Curve href="#i2">
</a2>
0.5
</Bbb>
<Cccid="i4">
<al>1.5</al>
<az>
<Line href="#i1">
</a2>
</Ccc>

©IS0 2004 — All rights reserved 47

| SO/WD 10303-29

9.2.9 Entity local rules

Entity local rules, WHERE rules and UNIQUE rules, shall not be mapped to the exchange structure.
9.2.10 Mapping of INVERSE attributes

Attributes within the INVERSE clause shall not be mapped to the exchange structure.

9.2.11 Encoding of short names

Short names shall have no effect on the encoding.

9.3 Mapping of the EXPRESS element of SCHEMA

The EXPRESS element of SCHEMA shall not be mapped to the exchange structure. The name of the
schema that specifies entities that appear in an exchange structure shall be mapped to the header sec-
tion of the exchange structure by use of an instance of the exchange_schema entity data type as speci-
fiedin7.2.3.

9.4 Mapping of the EXPRESS element of CONSTANT

The EXPRESS element of CONSTANT shall not be mapped to the exchange structure.

NOTE The existence of multiple referencesto the same constant is not preserved when that data is mapped to
the exchange structure.

9.5 Mapping of the EXPRESS element of RULE
The EXPRESS element of RULE shall not be mapped to the exchange structure.
9.6 Remarks

Remarks shall not be mapped to the exchange structure.

10 Mapping of Application Object instances to the exchange structure

This clause describes how application objects instances are mapped to the exchange structure.

Section 5.1 of an Application Protocol defines mapping paths for the Application Objectsin the proto-
col. These mapping paths define constraints that must be meet by instances in the exchange structure in
order for them to properly represent instances of the Application Object. This clause defines an encod-
ing for these mapping paths so that conformance checking can be defined for application object
instances independently of, or in addition to, AIM conformance.

NOTE Conformance checking of Application Objects enables modular reuse of application protocol data.

48 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

NOTE Conformance checking of all the Application Object instances in an exchange structure is not suffi-
cient to ensure AIM conformance because additional constraints on data sharing between Application Objects
instances are defined by the Integrated Resource parts.

10.1 Mapping of Application Object

An application object instance shall be mapped as an XML element in the exchange structure. The
application object name shall be mapped to the name of the XML element as specified in 6.1.3. The
content of the element shall consist of XML elements representing the attributes so the Application
Object encoded using the rules described in 10.2. No order is defined for these attributes.

NOTE1 The identity of an Application Object instance is defined by the entity instance that represents the
AIM element assigned to that Application Object by the mapping table, not by an indentifier on the element rep-
resenting the Application Object instance.

NOTE2 Application Object instances reference each other in-directly when the last element in a mapping path
isthe root instance of another Application Object instance of the correct type.

10.2 Mapping of Application Object attribute

If an Application Object attribute is mapped to the exchange structure, it shall be mapped as an XML
element with the name of application object attribute name as specified in 6.1.4

Both the explicitly defined attributes of the Application Object instance and the inherited attributes of
the Application Object instance can be mapped.

If an Application Object attribute is mapped to the exchange structure then a mapping path must be
mapped to the exchange structure as the XML conent of the XML element representing the Applica-
tion Object attribute using the rules described in 10.3.

NOTE 1 Thereis no requirement to map an Application Object attribute. If the attribute is mapped then the

representation of that attribute can be ARM conformance checked. If it is not mapped then its representation can-
not be ARM conformance checked.

NOTE2 Appliction Protocols frequently include ARM models. However, there is no requirement for these
models to be defined in EXPRESS.

EXAMPLE Application Object definition in amapping table

MANUFACTURING_FEATURE shape_aspect a1

its id shape_aspect.name

©IS0 2004 — All rights reserved 49

| SO/WD 10303-29

manufacturing_feature to PATH shape_aspect
workpiece shape_aspect.of _shape ->
(asits_workpiece) product_definition_shape <=

property_definition

property_definition.definition ->
characterized_definition
characterized_definition =
characterized product_definition
characterized product_definition
characterized product_definition =
product_definition
product_definition

Sampleinstantiation in ARM data section:

<MANUFACTURING_FEATURE>
<its_id>
<lits_id>
<its_workpiece>

</its workpiece>

</MANUFACTURING_FEATURE>

10.3 Mapping of Application Object attribute path

The mapping path of an Application Object attribute shall be encoded as a sequence of reference ele-
ments in the order given in the mapping table. Each reference element shall be an entity instance refer-
ence or an attribute value reference.

An entity instance reference shall be encoded as described in 9.1.6

A attribute value reference shall be encoded as an XML element with the name of the attribute and no
XML content.

The first item in each path for an Application Object instance shall be an entity instance reference to
the same entity instance. Thisinstance is called the root of the Application Object instance.

If the mapping defines a path to another Application Object instance then the last item in the path shall
be an entity instance reference to the root of that other Application Object instance.

If the mapping path defines a path to a value or values, then the path shall terminate with attribute
value references for each of those values. There shall be one attribute value for each value defined by
the path. All of the attribute values in the path shall be attributes of the last entity instance reference
given in the path. There shall be no additiona entity instance references in the path after the first
attribute value reference has been given.

If the mapping path as defined in the Application Protocol allows alternate paths to be used to represent

the Application Object attribute instance then the exchange structure for this instance shall encode the
chosen path.

50 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

NOTE 1 Some application protocols define paths that terminate in multiple values. If a path is to more than
one value then the path will end with more than one attribute value reference. However, all of the attribute value
references will belong to the same entity instance which will be the last entity instance referenced in the path.

NOTE 2 Some application protocols define paths that terminate in values that are described by entity instances
belonging to one of the integrated resource parts. The path will terminate with attribute value reference. How-
ever, if accessed the attribute will contain another entity instance and not a primitive value.

NOTE 3 An entity instance can be the root of more than one application object instance if all the application
object instances have different types. A system that uses root entity instances to navigate the ARM structure of an
Application Protocol needs to know which type of application object is being referenced by each path.

EXAMPLEMapping Path for its_id attribute instance of a Manufacturing Feature

<MANUFACTURING_FEATURE>

<ITS ID>
<Instanced_feature-pocket href="#id1-1"/>
<name/>

</ITS_ID>

<ITS WORKPIECE>
<Instanced_feature-pocket href="#id1-1"/>
<Product_definition_shape href="#id1-38"/>
<Product_definition href="WORKPIECE_38.xml#d1-1"/>

</ITS WORKPIECE>

</MANUFACTURING_FEATURE>
The first mapping path ends in avalue defined in the Instanced_feature-pocket entity instance.

The second mapping path endsin an entity instance that is the root of another Application Object. The definition of the AP requires
this application object to be a workpiece.

EXAMPLE Entity definition in EXPRESS:

ENTITY person ABSTRACT SUPERTY PE;
name : STRING;
personal _address: address;

END_ENTITY;

ENTITY male SUBTY PE OF (person);
END_ENTITY;

ENTITY femae SUBTY PE OF (person);
END_ENTITY;

ENTITY business;
bussiness name : STRING;
business_category : category;
business_address : address,
END_ENTITY;

TY PE category= ENUMERATION OF (FACTORY, OFFICE); END_TY PE;
ENTITY employment;
employee : person;

employer : business
END_ENTITY;

©IS0 2004 — All rights reserved 51

| SO/WD 10303-29

ENTITY marriage;
husband : male;
wife :female;

END_ENTITY;

Application Object definition for amailing list for afishing catalog. The catalog is only interested in males.
If the male works in an office then the mailing address is mapped to the office address. If the male does not work

in an office then his personal addressis used.

MAIL_TARGET

male

41

person =>
male

name person.name

person.name

spouse_name

person.name

person <-
marriage.husband
marriage
marriage.wife ->
person
person.name

#1 if worksin an office

#2 if worksin factory

address PATH

#1: (person <-
employment.person
employment
employment.employer ->
business
{business.business_category = "office"}
business.address)

#2 (person
{person <-
employment.person
employment.employer ->
business
business.business_category = "factory"}
person.address)

Sampleinstantiation in AIM data section:

<AIM>
<Maeid="id-1">
<name>Jack</name>

<personal_address href="personal _data.xml#Jack"/>

</Mae>
<Maeid="id-2">
<name>Bill</name>

<personal_address href="persona_data.xml#Bill"/>

</Mae>
<Femaleid="id-3"
<name>Jill</name>

<personal _address href="personal_data.xml#Jill"/>

</Female>
<Businessid="id-4">
<name>Big Office Inc.<name>

<business_address href="office_data.xml#id-1"/>
<business_category>OFFICE</business_category>

</Business>
<Businessid="id-5">

52

©IS0 2004 — All rights reserved

| SO/WD 10303-29

<name>Little Factory Inc.<name>
<business_address href="factory_data.xml#id-1"/>
<business_category>FACTORY </business_category>
</Business>
<Employment id="id-7">
<employee href="#d-1">
<employer href="#id-4">
</Employment>
<Employment id="id-8">
<employee href="#id-2">
<employer href="#id-5">
</Employment>
<Employment id="id-9">
<employee href="#id-3">
<employer href="#id-4">
</Employment>
</AIM>

Sampleinstantiation in ARM data section:

<ARM>
<MAILING_TARGET>
<name>
<Male href="#id-1">
<name/>
<name/>
<spouse_name>
<Male href="#id-1">
<Marriage href="personal_data#JackAndJill">
<Female href="id-3">
<name/>
</spouse_name>
<address>
<Male href="#id-1">
<Business href="#id-4">
<Address href="business_data.xmil#id-1">
<address/>
</MAILING_TARGET>
<MAILING_TARGET>
<name>
<Male href="#id-1">
<name/>
<name/>
<address>
<Male href="#id-1">
<Address href="address_data.xml#Bill">
<address/>
</MAILING_TARGET>
</ARM>

NOTE Thefirst mailing target has a spouse and the address used is his office.
NOTE The second mailing target has no spouse and the address used is his personal address.
NOTE Themarriage of Jack and Jill is stored in an entity instance belonging to adifferent AIM section. If the

exchange structure does not define a complete Application Protocol instance, then this entity instance can only be
found using the entity instance reference given in the path.

©IS0 2004 — All rights reserved 53

| SO/WD 10303-29

10.4 Mapping path validation
A mapping path shall be validated by:

- verifiying that each entity instance referenced in the path exists in the exchange structure

- verifying that each entity instance referenced in the path has the values and relationships required
by the mapping table. The meaning of these value and relationship requirementsis as described in
Section 5.1 of each protocol.

NOTE 1 If al the mapping paths are valid then the Application Object has a valid representation that can be
resued and stored in a library. For example, it is anticipated that manufacturing systems will begin to build
libaries of Application Objects representing common manufacturing features such as round_holes.

NOTE2 There may be additional constraints on the Application Object defined elsewhere in the AP. For
instance in the MAILING LIST example, presumably there is a constraint defined somewhere defined in the AP
that allows the spouse_name to be optional. Unfortunately there is consistent specification for identifying how
these constraints apply to individual Application Objects at the present time so conformance checking of these
congtraintsis only possible on the AIM level.

NOTE 3 Individual exchange processing systems may be able to check Application Object instances for con-
formance to an EXPRESS model defined for the ARM but this checking is not part of this edition of this stan-
dard.

11 Conformance Classes

This clause defines the conformance classes for this part of 1SO 10303. Three types of conformance are
described and used to define six conformance classes.

11.1 Syntactic Conformance
Syntactic conformance with respect to the EXPRESS schema defined in the header requires:

— All of the entity instances in the exchange structure are defined by the EXPRESS schema;

— All of the entity instances in the exchange structure have values defined for al of their required
attributes;

— All of the attributes (required and optional) are set to values of an allowed type;

— All of the XML elementsin the exchange structure are assigned one of meanings described in this
specification;

54 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

All of the XML elements in the exchange structure that represent attributes are assigned to an
entity instance;

All of the XML elements in the exchange structure that represent values are assigned to an
attribute.

11.2 AIM Conformance

AIM conformance with respect to the EXPRESS schema defined in the header requires:

The exchange structure meets the requirements of syntactic conformance;

All of thelocal rules of al of the entity instances evaluate to true or unknown;

— All of the global rules of the EXPRESS schema evaluate to true or unknown for the population as

specifiedin 8.3.1.

11.3 ARM Confor mance

ARM conformance with respect to the EXPRESS schema defined in the header requires:

The EXPRESS schemaidentifies an Application Protocol;

Each Application Object in the exchange structure is an Application Object of the Application
Protocol;

Each attribute of each Application Object is one of the attributes (explicit or inherited) identified
for that object in the Application Protocol;

The mapping path of each Application Object attribute is one of the paths defined for that attribute
by the mapping table;

Each entity instance referenced in the mapping path is a valid instance with the type allowed by
the mapping table;

Each entity instance identified by the mapping path has all the values required by the mapping
table including all the forward and backward references between instances required by the map-
ping table and all the constant values required by the mapping table;

Each value attribute identified by the mapping tableis an attribute of the last entity instance refer-
enced in the path.

©IS0 2004 — All rights reserved 55

| SO/WD 10303-29

11.4 Conformance Class 1
An exchange exchange structure shall be in conformance class 1 if:

— Theexchange structure consists of a single document with exactly one header element and exactly
one AIM element;

— All of the entity instance identifiers in the exchange are restricted entity instance identifiers as
specifiedin 6.2.5;

— The exchange structure meets the requirements of syntactic conformance.
NOTE Thisisthe XML equivalent of Conformance Class 1 of 1SO 10303-21..
11.5 Conformance Class 2

An exchange structure shall be in conformance class 2 if:

— Theexchange structure consists of a single document with exactly one header element and exactly
one AIM dement;

— All of the entity instance identifiers in the document are restricted entity instance identifiers as
specified in 6.2.5;

— The exchange structure meets the requirements of AIM conformance.

NOTE Thisisthe XML equivalent of Conformance Class 2 of 1SO 10303-21.

11.6 Conformance Class 3

An exchange structure shall bein conformance class 3 if:

— The exchange structure meets the requirements of syntactic conformance.

NOTE This conformance class allows instance data to be distributed between multiple data elements and
resource elements. The data elements can be AIM elements and ARM elements. The resource elements can bein

XML documents and 1SO 10303-21 files.

11.7 Conformance Class4
An exchange structure shall be in conformance class 4 if:

— The exchange structure meets the requirements of AIM conformance.

56 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

NOTE Thisconformance class aso allowsinstance data to be distributed between multiple data elements and
resource el ements. The data el ements can be AIM elements and ARM elements. The resource el ements can bein
XML documents and 1 SO 10303-21 files.

11.8 Conformance Class5

An exchange structure shall be in conformance class 5 if:

— The exchange structure meets the requirements of ARM conformance.

NOTE Thisconformance class aso allowsinstance data to be distributed between multiple data elements and

resource el ements. The data el ements can be AIM elements and ARM elements. The resource el ements can be in
XML documents and 1 SO 10303-21 files.

11.9 Conformance Class 6

An exchange structure shall be in conformance class 6 if:

— The exchange structure meets the requirements of AIM and ARM conformance.

NOTE Thisconformance class aso allowsinstance data to be distributed between multiple data elements and

resource el ements. The data el ements can be AIM elements and ARM elements. The resource el ements can bein
XML documents and | SO 10303-21 files.

©IS0 2004 — All rights reserved 57

| SO/WD 10303-29

Annex A
(informative)

Guidlinesfor translating I SO 10303-21 filesto 1SO10303-29

58 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

Annex C
(normative)

Infor mation object registration

C.1 Document identification

In order to provide for unambiguous identification of an information object in an open system, the
object identifier

{ iso standard 10303 part(21) version(3) }

is assigned to this part of 1SO 10303. The meaning of this value is defined in ISO/IEC 8824-1, and is
described in 1SO 10303-1.

C.2 Schema identification

In order to provide for unambiguous identification of the header_section_schemain an open informa-
tion system, the object identifier

{ iso standard 10303 part(21) version(3) object(1) header-section-schema(l) }

is assigned to the header_section_schema schema (see clause 7). The meaning of this value is defined
in ISO/IEC 8824-1, and is described in 1SO 10303-1.

©IS0 2004 — All rights reserved 59

| SO/WD 10303-29

60

Annex D
(informative)

Guidlinesfor writing XML Schema

©IS0 2004 — All rights reserved

| SO/WD 10303-29

Annex E
(normative)

Protocol | mplementation Confor mance Statement (PICS) proforma

The Protocol Information and Conformance Statement (PICS) Proforma supports the conformance
assessment of implementations requesting evaluation to this part of 1SO 10303. This annex is in the
form of a questionnaire. This questionnaire isintended to be filled out by the implementor and may be
used in preparation for conformance testing by atesting laboratory.

All implementors shall provide answersto the questions provided in E.1 and E.2.

E.1 Conformance to specified function
Check asmany as are appropriate.

E.1.1 Entity instance encoding

Does the implementation support Conformance Class One?

_ forreading _ for writing

Does the implementation support Conformance Class Two?

___ forreading __ forwriting

E.1.2 Short name encoding

Does the implementation support short names for entities

_ forreading _ for writing

Does the implementation support short names for select type values
_ forreading _ for writing

Does the implementation support short names for enumeration values
___ forreading __ forwriting

E.1.3 String encoding

Does the implementation support the \X\ encoding for 8-bit bytes?
___forreading, and if so, what is the binary representation used by the implementation?

©IS0 2004 — All rights reserved 61

| SO/WD 10303-29

___ forwriting

Does the implementation support the \S\ and \P\ encoding for SO 8859 characters?

___ forreading, and if so, what is the binary representation used by the implementation?
___ forwriting

Does the implementation support the \X 2\ encoding for |SO 10646 characters?

___ forreading, and if so, what is the binary representation used by the implementation?
___ forwriting

Does the implementation support the \X 4\ encoding for |SO 10646 characters?

___ forreading, and if so, what is the binary representation used by the implementation?

___ forwriting

E.2 Implementation limits

What is the maximum number of schemas that be referenced by an exchange structure?

Wheat is the maximum number of data sections that may exist within an exchange structure?
What is the maximum number of entity instances that may exist within a data section?

What is the maximum number of entity instances that may exist within an exchange structure?

What is the maximum value (or binary representation used by the implementation) for entity instance
identifiers that is supported?

What are the maximum and minimum values (or binary representation used by the implementation) for
EXPRESS INTEGER that is supported?

What isthe limit of EXPRESS REAL precision (or binary representation used by the implementation)
that is supported?

What is the maximum length of EXPRESS STRING that is supported?
Wheat is the maximum length of EXPRESS BINARY that is supported?
Wheat is the maximum number of elements that may appear in the encoding of an aggregate?

What is the maximum nesting depth that may appear in the encoding of nested aggregates?

62 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

Annex F
(informative)

Example of a complete CC 2 exchange structure

F.1 Introduction

An example EXPRESS schema definitions, a table of short names and an exchange structure are pre-
sented below. This EXPRESS schema does not reflect the contents of any part of 1SO 10303.

F.2 Example schema

The EXPRESS schema definitions used for the exchange structure example.

SCHEMA exanpl e_geonetry;

TYPE | engt h_neasure = NUMBER,
END_TYPE;

ENTI TY geonetry
SUPERTYPE OF (ONECF(point));
END_ENTI TY;

ENTI TY poi nt

SUPERTYPE OF (ONEOF(cartesian_point))
SUBTYPE OF (geonetry);

END_ENTI TY;

ENTI TY cartesi an_poi nt
SUBTYPE OF (point);

x_coordinate : |ength_measure;

y _coordinate : |ength_neasure;

z_coordinate : OPTIONAL | ength _neasure;
END_ENTI TY;

TYPE edge_or |ogical = SELECT (edge, edge | ogical structure);
END_TYPE;

ENTI TY topol ogy
SUPERTYPE OF (ONEOF(vertex, edge, |oop));
END_ENTI TY;

ENTITY vertex

SUBTYPE OF (topol ogy);
vertex_point : OPTI ONAL point;

END_ENTI TY;

ENTI TY edge

©IS0 2004 — All rights reserved 63

| SO/WD 10303-29

SUBTYPE OF (topol ogy);

edge_start . vertex;
edge_end . vertex;
END_ENTI TY;

ENTI TY edge_| ogi cal _structure;

edge_el enent : edge;
flag : BOOLEAN
END_ENTI TY;

ENTITY | oop

SUPERTYPE OF (ONEOF(edge | oop))
SUBTYPE OF (topol ogy);

END_ENTI TY;

ENTI TY edge_| oop
SUBTYPE OF (I oop);

| oop_edges : LIST [1:?] OF edge_or_|logical;
END_ENTI TY;

END_SCHEMA,

F.4 Example exchange structure

The following is an example of a complete exchange structure. Note that since the schema s only an
example, there is no schema registration id present in the schema_name attribute of the file_schema
entity instance in the header section.

| SO- 10303- 21;
HEADER;
FI LE_DESCR PTION((' TH'S FI LE CONTAINS A SMALL SAMPLE STEP MODEL'),'3;1');
FI LE_NAVE(' EXAMPLE STEP FILE #1',
' 1992- 02- 11T15: 30: 00' ,
(" JOHN DOE ,
"ACME INC. ',
" METROPCLI S USA'),
(" ACME INC. A SUBSI DI ARY OF G ANT | NDUSTRIES', ' METROPOLI S USA'),
' CI M STEP VERSI ON2'
' SUPER O M SYSTEM RELEASE 4. 0',
" APPROVED BY JOE BLOGGS');
FI LE_SCHEMA((' EXANPLE_GEQVETRY')) ;
ENDSEC;
DATA;
/*
THE FOLLOW NG 13 ENTI TI ES REPRESENT A TRI ANGULAR EDGE LOOP
x|

#1=CPT(0. 0, 0.0, 0. 0) ; /* TH'S I'S A CARTESI AN POl NT ENTI TY */
#2=CPT(0. 0, 1.0, 0. 0) ;

#3=CPT(1.0,0.0,0.0);

#11=VX(#1) ; /* TH'S I'S A VERTEX ENTI TY */

64 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

#12=VX(#2) ;

#13=VX(#3) ;

#16=ED(#11, #12) ; /* TH'S IS AN EDGE ENTI TY */

#17=ED(#11, #13) ;

#18=ED(#13, #12) ;

#21=ED STRC(#17,.F.); /* TH'S 1S AN EDGE LOG CAL STRUCTURE ENTITY */

#22=ED_STRC(#18, . F.);

#23=ED_STRC(#16, . T.);

#24=ED_LOOP((#21, #22,#23)); /* THIS IS AN EDGE LOOP ENTITY */

/ *
OTHER SYNTACTI CAL REPRESENTATI ONS WERE PCSS| BLE. THE PREVI OUS
EXAVPLE | S REPRESENTATI VE OF ONE POSSI BLE APPROACH.

*/

ENDSEC;

END- | SO- 10303- 21;

NOTE This example exchange structure has been edited to aid readability. Unnecessary spaces have been
added to aid readability.

©IS0 2004 — All rights reserved 65

| SO/WD 10303-29

Annex G
(informative)

Example of a complete CC 4 exchange structure

66 ©IS0 2004 — All rights reserved

| SO/WD 10303-29

Index
B (dollar SIgN) . .ot 21-7?, 21-7?, 21-26
AON O . .o e 21-7?, 21-7? 21-26
= 22
attribute

EriVed . o 35, 46

EXPlCIt . e 32-35, 35-??

1177 = 46

redeClared 46-?
07 o 25
DNy ..o e e 20
0070] =" 0 18
Clear teXt eNCOAINGot e 3
COMPIEX ENLILY INSEANCEottt e e e e e e e et 32
conformance

S0 11 1= 4

Y11= o3 £ o 4
CONS AN . ..ottt e 48
JataseCtioN ... 5, 15-16, 72-17, 35
QAP . .ot e 6
BNy . e e 10, 3248
entity instancename 8, 8-7?, 8-7?, 3077, 31-7?, 48
LS 0181 0.07= = (0] o 9, 18, 27
EXChANgE StTUCIUNE . . oot it e e et et et et et e 4-5, 725, 10, 18, 63
external MapPIiNgt e 37, 41-7?, 45-?
il dESCriptioN . ..o e 11
fIlE NamME .. 11
fille POPUIAION e e e e e 13
fille SChema ... e 13, 14, 48
lobal TUIES . . . oo e e 48
header SECHiON 5, 10-7?, 48
instance name, see entity instance name
1= . 5,6, 18
1= 7= 7= o1 o 37,3841
Y= = 48
IS0 B30 ..t 1
KEYWOI . ..o e 5
LISt et e e e 21
[0CAl TUIES . . . o e e 48
LOgICaAl .. e 18
manufacturing_feature

MaPPINg SPECITICAION e 49, 52
UM B . oo e 21
Ot ONAl .o 34
FEAl . . ottt e 6, 19
FEMAIK S . it e e e 48
TULE © et i e e e e e e 48
SN . . . e e 4,10, 13, 48

©IS0 2004 — All rights reserved 67

| SO/WD 10303-29

SE OOt L 27
= P 25
S 10 0 7= 0 - 48
SIMP e da Aty PES ..t e e 18-21
SMpledefined type ..o e e e 26
SMple entity INStANCE o e 32
51 11T 7,18
U Y D . . ot e 32,37
SUP B Y . v ettt e e e 35, 37
W L e 48

68 ©IS0 2004 — All rights reserved

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviations
	3.1 Terms defined in ISO 10303-1
	3.2 Terms defined in ISO 10303-11
	3.3 Terms defined in XML Standards
	3.4 Other definitions
	3.4.1 XML encoding
	3.4.2 Most specific defined type

	3.5 Abbreviations

	4 Exchange structure fundamental concepts and assumptions
	4.1 Introduction
	4.2 Notational and typographical conventions
	4.3 Conformance

	5 Formal definitions
	5.1 Exchange structure

	6 Basic Tokens
	6.1 Keywords
	6.1.1 Entity and Defined Type Keywords
	6.1.2 Attribute Keywords
	6.1.3 Application Object Keywords
	6.1.4 Application Object Attribute Keywords

	6.2 Simple data type encodings
	6.2.1 Integer
	6.2.2 Real
	6.2.3 String
	6.2.3.1 Maximum string length

	6.2.4 Entity Instance identifiers
	6.2.5 .Restricted Entity Instance identifiers
	6.2.6 Entity Instance references
	6.2.7 Enumeration values
	6.2.8 Binary

	7 Header element
	7.1 Header section entities
	7.2 Header section schema
	7.2.1 exchange_description
	7.2.2 exchange_name
	7.2.3 exchange_schema
	7.2.4 exchange_population
	7.2.5 exchange_space

	8 Exchange Structure Population
	8.1 Included Documents
	8.1.1 AIM Elements
	8.1.2 ARM Elements

	8.2 Resource elements
	8.3 Exchange Structure Population
	8.3.1 Entity Instance Population
	8.3.2 Application Object Population

	9 Mapping of Entity Instances to the exchange structure
	9.1 Mapping of EXPRESS data types
	9.1.1 Mapping of EXPRESS simple data types
	9.1.1.1 Integer
	9.1.1.2 String
	9.1.1.3 Boolean
	9.1.1.4 Logical
	9.1.1.5 Real
	9.1.1.6 Binary
	9.1.1.7 Number

	9.1.2 Aggregates
	9.1.2.1 Unset Values in aggregates
	9.1.2.2 List
	9.1.2.3 Array
	9.1.2.4 Set
	9.1.2.5 Bag

	9.1.3 Simple defined types
	9.1.4 Enumeration types
	9.1.5 Select data types
	9.1.6 Entity Instance reference element
	9.1.7 Entity Instance reference element short form

	9.2 Mapping of EXPRESS entity data types
	9.2.1 Mapping of a simple entity instance
	9.2.2 Mapping of OPTIONAL explicit attributes
	9.2.3 Mapping of derived attributes
	9.2.4 Mapping of attributes whose values are entity instances
	9.2.5 Entities defined as subtypes of other entities
	9.2.5.1 Default selection of mapping
	9.2.5.2 Internal mapping
	9.2.5.3 External mapping
	9.2.5.4 Attributes with the same name.

	9.2.6 Explicit attributes redeclared as DERIVEd
	9.2.7 Attributes redeclared as INVERSE
	9.2.8 Attributes redeclared as explicit attributes
	9.2.9 Entity local rules
	9.2.10 Mapping of INVERSE attributes
	9.2.11 Encoding of short names

	9.3 Mapping of the EXPRESS element of SCHEMA
	9.4 Mapping of the EXPRESS element of CONSTANT
	9.5 Mapping of the EXPRESS element of RULE
	9.6 Remarks

	10 Mapping of Application Object instances to the exchange structure
	10.1 Mapping of Application Object
	10.2 Mapping of Application Object attribute
	10.3 Mapping of Application Object attribute path
	10.4 Mapping path validation

	11 Conformance Classes
	11.1 Syntactic Conformance
	11.2 AIM Conformance
	11.3 ARM Conformance
	11.4 Conformance Class 1
	11.5 Conformance Class 2
	11.6 Conformance Class 3
	11.7 Conformance Class 4
	11.8 Conformance Class 5
	11.9 Conformance Class 6

	Annex A
	Annex C
	C.1 Document identification
	C.2 Schema identification

	Annex D
	Annex E
	E.1 Conformance to specified function
	Check as many as are appropriate.
	E.1.1 Entity instance encoding
	E.1.2 Short name encoding
	E.1.3 String encoding

	E.2 Implementation limits

	Annex F
	F.1 Introduction
	F.2 Example schema
	F.4 Example exchange structure

	Annex G
	Index

