Template for comments and secretariat observations
Date:
Document: ISO/

1
2
3
4
5
6
7

MB1

Clause/
Subclause/
Annex/Figure/Table
(e.g. 3.1, Table 2)
Paragraph/
List item/
Note/
(e.g. Note 2)
Type of com-ment2
Comment (justification for change)
Proposed change
Secretariat observations
on each comment submitted

Template for comments and secretariat observations
Date: 2002-09-24
Document: ISO/DIS 10303-14

1
2
(3)
4
5
(6)
(7)

MB1

Clause No./
Subclause No./
Annex
(e.g. 3.1)
Paragraph/
Figure/Table/Note
(e.g. Table 1)
Type of com-ment2
Comment (justification for change) by the MB
Proposed change by the MB
Secretariat observations
on each comment submitted

DE-1
9.4.1
rr a)
te
This rule/restriction says:

if target parameter does not specify a target_parameter_id

But the grammar requires at least one target_parameter_id to be present! Conttradiction:

212. target_parameter = target_parameter_id ...

Also, at least two examples in part 14 (9.4.3.2 example on page 29, 9.4.7 example on page 38) also have target_parameter_id missing, as if target_parameter were optional.
Perhaps it was meant to have target_parameter_id optional:

212. target_parameter = [target_parameter_id {',' target_parameter_id } ':'] ...

DE-2
9.4.1
rr b)
te
If only one partition is allowed by this restriction, why the grammar explicitly allows more than one. It is a contradiction.

It would be simple to allow only one partition in the grammar and to remove this restriction altogether. Making such a change would require changes in grammar boxes in 9.4.4, 9.4.5, annex B, etc.

Currently:

map_decl = MAP map_id AS target_parameter ';' { target_parameter ';' }

(map_subtype_of_clause subtype_binding_header map_decl_body {

subtype_binding_header map_decl_body }) | (binding_header

map_decl_body { binding_header map_decl_body }) END_MAP ';' .
Could be instead:

map_decl = MAP map_id AS target_parameter ';' { target_parameter ';' }

(map_subtype_of_clause subtype_binding_header map_decl_body) |

(binding_header map_decl_body { binding_header map_decl_body }) END_MAP ';'

If subtype, then only one pair of subtype_binding_header map_decl_body,

if not subtype, then one or more pairs or binding_header map_decl_body.

And the rule/restriction b) should be removed.

DE-3
9.3.1 and/or 9.3.3 , 9.4.1 and/or 9.4.4
syntax boxes
ge/ed
subtype_binding_header is not expanded anywhere in part 14 except in the annex B. Not for view_declaration, not for map_declaration. Not in any of the syntax boxes. Not consistent with the style where usually expansions are presented in boxes.

DE-4
9.4.4
rr
te
Can a map have an implicit no-name partition?

Examples illustrate that yes; there can be such partitions, for example, 9.4.5 example 1on page 34.

The grammar also allows optional partition keyword and ID:

44. binding_header = [PARTITION partition_id “;'] ...

And yet, rules a) and b), when applied together, rule out the default no-name partition. Because:

a) says in part that each partition shall be named by a partition_id, and

b) makes at least one partition necessary.
Perhaps rule c) should be added, similar to the one for view.

c) The PARTITION language element is required unless the map consists of a single partition

DE-5
Annex B.
B.1.3
ed
map_ref is not defined in part 14, but used 3 times in the grammar.
To add to B.1.3 Interpreted identifiers, page 66:

30. map_ref = map_id

The numbering in B.2 and B.3 (and everywhere in part 14) has to be adjusted correspondingly.

DE-6
Annex B.
B.1.3
te/ed
resource_ref is not defined

resource_ref should have been defined in part 11, but it is not - a bug in part 11.

But the bug is transfered to part 14,

part 14 cannot rely on part 11 blindly.

If resource_ref is not defined in part 11,

perhaps part 14 has to fix the bug in part 11 and define resource_ref in part 14, because part 14 references it.
To add resource_ref to the list of interpreted identifiers in B.1.3, to adjust numbering in B.2, B.3, etc.

DE-7
10.3, annex B
B.2
te
97. general_or_map_call = general_ref ['@' map_call]

A number of problems here:

First,

general_ref does not include target_parameter_ref which is needed here in the case of a map_call:

98. general_ref = parameter_ref | variable_ref.

Parameter does not include target_parameter, and parameter_ref does not include target_parameter_ref.

target_parameter_ref in this grammar formally has nothing to do with parameter_ref

Either the general_ref has to be expanded, or parameter_ref somehow expanded, or target_parameter_ref used explicitly in map call.

As it is now, also 10.3 rule a) on page 46 is not clear, it deals with target_parameter_ref which is absent in the grammar of map call. Contradiction.

Second, the current grammar does not allow to have a map call without using general_ref @ construction, even when there is only one target_parameter.

Yet, 10.3 rule b) on page 46 says:

If the map declaration referenced by the map call declares more than one target parameter, then general_ref @ syntax shall be used.

That implies that this syntax is optional, and if there is only one target parameter it can be not used. Contradiction!
Perhaps, this grammar can be used instead:

97. general_or_map_call = [target_parameter_ref @] map_call.

target_parameter_ref used explicitly, and not map_call but target_parameter_ref made optional.

Of course, in this case, general_ref should be added to

161. qualifiable_factor = ...

separatelly, in addition to general_or_map_call.

BTW, the name “general_or_map_call” is not very suitable here either, because it is map_call only now.

DE-8
Annex B
B.2., B.1.3
ed
target_parameter_ref definition is in B.2:

214. target_parameter_ref = target_parameter_id.

target_parameter_ref is an interpreted identifier and should be in B..1.3.
Move 214. target_parameter_ref from B.2. To B.1.3, adjust numbering in B.2, B.3, etc.

DE-9
Annex B
B.2
te
target_parameter_ref is missing in

161. qualifiable_factor
target_parameter_ref should be added to

161. qualifiable_factor,

(Separately from target_parameter_ref@map_call), or to

98. general_ref.

DE-10
Annex B
B.1.3, B.2.
te
source_parameter_ref is missing in the grammar.

It is not defined anywhere in B.1.3 or B.2, and it is not referenced anywhere in B.2.

Source parameter references are not handled at all, although they can be present in view and map declarations.

1. Add source_parameter_ref to B.1.3,

2. Add source_parameter_ref to

161. qualifiable_factor = ...

or to

98. general_ref = ...

3. Adjust numbering in B.2, B.3 and elswhere.

DE-11
10.3, annex B
B.2.
te
Here is a specific proposal of the new grammar that incorporates comments DE-7, DE-9, DE-10 (partially).

Instead of:

97. general_or_map_call = general_ref ['@' map_call].
 98. general_ref = parameter_ref | variable_ref.
161. qualifiable_factor = attribute_ref | constant_factor | function_call |
general_or_map_call | population | view_attribute_ref | view_call.
Change to:

97. general_or_map_call - REMOVE ALTOGETHER.
 98. general_ref = parameter_ref | source_parameter_ref |
target_parameter_ref | variable_ref.
161. qualifiable_factor = attribute_ref | constant_factor | function_call |
general_ref | qualified_map_call | population | view_attribute_ref |
view_call.
777. qualified_map_call = [target_parameter_ref '@'] map_call.

Here qualified_map_call is new, the name general_or_map_call is wrong, there
is no OR here.

The correct number should be used instead 777

DE-12
10.3, annex B
B.2
te
The order target_parameter_ref@map_call is unnatural, because target_parameter is actually a qualifier, to find target_parameter, first you need to know the map, to extract map reference from map_call, target_parameter is in map scope.

Instead of (taking into account DE-11):

777. qualified_map_call = [target_parameter_ref '@'] map_call.

The number 777 here is not in the current B.2.

The change of a change is proposed here
Much better would be to invert the order, with '@' or different syntax:

777. qualified_map_call = map_call ['@' target_parameter_ref]

DE-13
10.3, annex B
B.2.
te
Possibly inconsistent usage of view_reference and map_reference, possibly incorrect usage of map_ref: In view_call, view_reference is used, in map_call, map_ref is used, not map_reference:

132. map_call = map_ref ...

226. view_call = view_reference ...
It probably should be:

132 map_call = map_reference ...

DE-14
9.3, annex B.
9.3.1, 9.3.5, 9.36, B.2.
te
The grammar of view declaration is too general, it requires many rules and restrictions to define things outside the grammar that should have been defined in the grammar itself. That makes implementing of Express X parsers difficult because of unnecessary choice conflicts.

Specifically, rules and restrictions 9.3.1 a, b, 9.3.5 a, b, 9.3.6 a, b, e could be eliminated and their contents implemented in the grammar itself, i.e, the following functionality should be hardwired into the grammar of view declaration:

If dependent view : base type present, not SUBTYPE, no SELECT, RETURN;

If subtype view: no RETURN, not dependent, no FROM, no IDENTIFIED_BY;

If not dependent, not subtype: no base type, no RETURN, FROM - possibe, IDENTIFIED_BY - possible, SELECT possible;

Instead of the original syntax of view declaration:

view_declaration = VIEW view_id [':' base_type] subsuper ';'

(subtype_binding_header view_project_clause

{ subtype_binding_header view_project_clause }) |

(binding_header view_project_clause

{ binding_header view_project_clause })

END_VIEW ';'.

and the above listed rules and restrictions,
The new proposed syntax of view declaration:

view_decl = VIEW view_id (dependent_view_decl | independent_view_decl

END_VIEW ';'.

independent_view_decl = [supertype_constraint] (subtype_view_decl |

root_view_decl).

root_view_decl = ';' binding_header independent_view_project_clause

{ binding_header independent_view_project_clause }.

dependent_view_decl = ':' base_type [supertype_constraint] binding_header

RETURN expression

{ binding_header RETURN expression }.

independent_view_project_clause = <SELECT> view_attr_decl_stmt_list.

subtype_view_decl = subtype_declaration ";" subtype_binding_header

independent_view_project_clause

{ subtype_binding_header independent_view_project_clause }.

New productions (not yet in B.2) here are:

dependent_view_decl

independent_view_decl

root_view_decl

subtype_view_decl

Independent_view_project_clause

DE-15
9.2.1
rr
te
According to the grammar, local variables are declared in each partition.
But there is a comment in the text of 9.2.1 that says that the scope of local variable is map:
"local variable is only visible within the scope of the map declaration
where it is declared"

But local variables are declared in partitions, so what if the next partition declares a local variable with the same ID?
There is no rule/restriction that prevents that, and grammar allows that.
Does the quoted text above about the visibility prevent by itself having two local variables with the same name in different partitions? This text is has no status of a rule or restriction.
Probably one of the two is correct:

1. either the scope of local variables should be partition, not map
2. or an explicit restriction b) should be written on page 15 in 9.2.1 similar to restriction a) on page 16 for source_parameter_id.
If applicable, add restriction b) to the first part of 9.2.1 (on page 15):

local_variable_ids shall be unique within the scope of the map declaratixon

DE-16
.9.2.1

ed
3. What's the idea of making two syntax boxes anyway, and two rules a) in the same subclause?
Perhaps it is better to put everything into the same box and make rules a and b (and c – see DE-15) or to make two separate subclauses.

DE-17
 9.2.3

ed
Ambiguous text:

"exactly one evaluation" that produces a non-indeterminate value

What does it mean? It may be confusing:

a) evaluation of exactly one binding instance

b) evaluation of any number of binding instances resulting in exactly one and the same non-indeterminate value, i.e, there may be more than one binding instance that evaluates to the same value + some indeterminate values.
Probably the right answer is b).

If in an equivalence class there are several binding instances being evaluated to the same value + other binding instances evaluated to indeterminate value, then that non-indeterminate value is assigned to the attribute.

DE-18
9.4.3.2
Example
te/ed
In MAP tp:

SELECT is missing, according to the grammar, either RETURN or at least one SELECT must be present:

134 . map_decl_body = entity_instantiation_loop { entity_instantiation_loop }) | map_project_clause | (RETURN expression ';').

 73 . entity_instantiation_loop = FOR instantiation_loop_control ';' map_project_clause.

136. map_project_clause = SELECT map_attribute_declaration { map_attribute_declaration }.

So, If no RETURN, then map_project_clause is invoked either directly or through entity_instantiation_loop, and map_project_clause has non-optional SELECT

Of course, to add SELECT is not enough, there has to be also at least one map attribute, because map_attribute_declaration is not optional in 136, and according to 131, it cannot be empty:

131 map_attribute_declaration = [...] attribute_ref [...] ':=' expression ';'.
Add SELECT, add at least one attribute.

Or change the grammar to make this example legal.

DE-19
9.4.5
example 1
ed
In MAP in_house_map:

tp.management := IF (cost < 50000) THEN 'small accts'

What is cost here?
Perhaps it should be:

tp.management := IF (p.cost < 50000) THEN 'small accts';

DE-20
9.4.5
example 2
ed
In MAP super_map:

FOR i := 1 TO no_of_versions;

What is no_of_versions here?
 Perhaps it should be:

 FOR i := 1 TO prt.no_of_versions;

DE-21
9.4.3.2
example
te/ed
target_parameter_id is missing:

MAP tp AS tar.parent;
Should be:

MAP tp AS some_id_here_needed : tar.parent;

target parameter must have at least one ID, the ID is not optional,

see rule 212, page 72.

NOTE: perhaps the example is ok, but the grammar should be changed to make ID optional, see DE-1

DE-22
9.4.7
example
te/ed
target_parameter_id is missing:

MAP unique_orgs_map AS organization;
Should be:

MAP unique_orgs_map AS something_here : organization;

Or again, the example is OK, but the grammar – not. See DE-1

DE-23
10.3
example 1
ed
Resulting target instances:

#101=PERSON('Jones');

#102=PERSON('Smith');
Should be:

#101=PERSON('miller');

#102=PERSON('jones');

Three differences: one name, the first letter of the second name, and the order of the instances.

Or the names in the source instances should be changed to correspond to the result.

DE-24
9.4.3.1
rr b)
ed
“..shall values greater.. ”
Should be:

“..Shall have values greater..”

1
MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China)
** = ISO/CS editing unit

2
Type of comment:
ge = general
te = technical
ed = editorial

NB
Columns 1, 2, 4, 5 are compulsory.

page 1 of 9
FORM 13B (ISO) version 2001-09
1
MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2
Type of comment:
ge = general
te = technical
ed = editorial

NOTE
Columns 1, 2, 4, 5 are compulsory.

page 1 of 9
ISO electronic balloting commenting template/version 2001-10

