
2 Checking Algorithm 
This algorithm determines whether a combination of (partial entity data types), Gp, conforms to a given EXPRESS 
schema.  Gp might, for example, represent the set of partial entity instances appearing in an entity instance.  For that 
entity instance to be valid, Gp must be valid under the algorithm presented here. 

2.1 Construct the subsup graphs 

The entities in an EXPRESS schema can be partitioned into disjoint supsub graphs, in which the nodes are entity data 
types and the edges are (directed) subtype relationships. A supsub graph, G, may be constructed as follows: 

1. Choose any entity data type, e, that has not yet been assigned to a graph. Add entity e to the graph G. 

2. For each entity e that is added to graph G, add all its immediate supertypes to the graph, deleting any 
duplicates; 

3. For each entity e that is added to graph G, add all its immediate subtypes to the graph, deleting all duplicates. 

Repeat (2) and (3) for each new entity that is added to the graph, until all entities in the graph have been processed. 

The members of a supsub graph, G, form a set, say G = {a, b, c, . . . n}. A supsub graph may consist of a single entity, 
in which case the entity will be neither a supertype nor a subtype. 

2.2 Collect the constraints 

This part of the algorithm collects all the constraints applicable to the entities in the supsub graph G. 

1. For each entity e in G that is declared SUBTYPE OF (s1 [, s2, …, sn]), create a logical expression of the form: 
NOT e OR (s1 [AND s2 … AND sn]) 
where s1 , s2, …, sn are the entities appearing in the SUBTYPE clause. 

Note – if the graph G is created as a graph and not just a set, then s1 , s2, …, sn are all the entities that are 
connected by edges out of the node e.  

2. For each entity e in G that is declared ABSTRACT SUPERTYPE, create a logical expression of the form: 
NOT e OR (s1 [OR s2 … OR sn]) 
where s1 , s2, …, sn are all the entities that are declared SUBTYPE OF (e) in the schema. 

Note – if the graph G is created as a graph and not just a set, then s1 , s2, …, sn are all the entities that are 
connected by edges into the node e.  

3. For each ANDOR operator in a subtype constraint expression, where  
- the operator is not part of a subexpression operand of a ONEOF expression or an AND expression, and 
- one of the operands of the ANDOR is an entity reference,  
delete the ANDOR operator and the entity reference. 

For example the following expression, where lowercase letters are entity references: 
a ANDOR b ANDOR ONEOF(c, d, e ANDOR f, g) ANDOR h ANDOR i 
reduces to 
ONEOF(c, d, e ANDOR f, g) 

4. Identify the set of root entities in the graph, RG, i.e. the set of entity data types that are not subtypes of any 
other entity.  

If RG contains only one root entity, skip the rest of this step. 

If RG contains more than one root entity, do the following. 

• Create the set of all distinct pairs of entities in RG, PG = { (ri, rj) | j > i, ri, rj in RG }. To each such pair in PG 
attach a logical expression, initialized to NOT (ri AND rj), where (ri, rj) is the pair. 

Note – the set PG will have n • (n – 1) / 2 members, where n is the number of root entities in RG. 



• Create the set SG of all multiply inheriting subtypes in the graph G, i.e. the set of entity nodes that have 
more than one subtype edge out of them. 

• For each member (subtype), sm, in SG : 

a.  determine the set of all root entities, Rm that can be reached by following the SUBTYPE OF links 
(directed edge sequences) out of sm through any number of edges to a root. 

b.  If Rm has only one member, do nothing, and go on to the next member of SG. 

c.  If Rm has more than one member, create the set of all distinct pairs of entities in Rm,  
Pm = { (ri, rj) | j > i, ri, rj in Rm }. 

d.  For each member of Pm, find the corresponding member (root entity pair) of PG and add "OR sm" to its 
attached logical expression.  (This modifies the expression to allow that root entity combination when 
subtype sm is present in the instance.) 

When all the multiply inheriting subtypes in SG have been processed, the logical expressions attached to 
the members of PG are complete. 

• For each member of PG, add its attached logical expression to the set of logical expressions representing 
the subtype constraints. 

These expressions are used to invalidate root combinations that are not allowed by the multiply inheriting 
subtypes. 

5. For each entity ei in the supsub graph G collect all constraint expressions that apply to it. Except for 
TOTAL_OVER constraints, a constraint expression applies to an entity ei if the expression includes an entity 
reference ei. 

For example, the constraint expression 
ONEOF(c, d, e) 
applies to entities c, d and e only; it does not apply to any other entities. 

A TOTAL_OVER constraint for an entity, say e, applies to all immediate subtypes of e that are not referenced 
within the expression. 

For example: 
SUBTYPE_CONSTRAINT sc FOR e; TOTAL_OVER(b,c); END_SUBTYPE_CONSTRAINT; 
will result in the TOTAL_OVER being applied to all the immediate subtypes of e, except for subtypes b and c. 

2.3 Check the structure 

This stage of the algorithm checks Gp against the EXPRESS requirement that entity data types that are not subtypes (the 
root nodes of the graphs) cannot be combined unless a specific subtype declaration joins their supsub graphs.  Simply 
stated, a combination Gp is not valid unless it corresponds to exactly one graph G developed from the EXPRESS 
schema as specified in 2.1 above. 

For a given combination Gp, choose any entity e in Gp.  By the construction algorithm given in 2.1 entity e appears in 
exactly one supsub graph, G.  Gp is tentatively valid if every entity in Gp is in G, and it is invalid if that is not the case. 

If Gp is invalid, stop. If Gp is tentatively valid, continue. 

2.4 Evaluate the constraints 

At this point every entity in the supsub graph G has a list, possibly empty, of the applicable constraint expressions. This 
part of the algorithm checks the constraint expressions applicable to the entities in the set Gp. 

Given a set of entities, Gp, and a corresponding set of constraint expressions then: 

• A subexpression that consists only of an entity reference is TRUE if the entity is a member of Gp, otherwise it 
is FALSE. 



• A ONEOF expression is TRUE if no more than one of its subexpressions is TRUE, otherwise it is false. 

• An ANDOR expression is equivalent to a logical OR expression. It is TRUE if either of its operands is TRUE, 
otherwise it is FALSE. 

• A TOTAL_OVER expression is equivalent to the logical expression formed by ORing its subexpressions. 
It is TRUE if one or more of its subexpressions are TRUE, otherwise it is FALSE. 

• An AND expression is equivalent to a logical AND expression. It is TRUE if both its operands are TRUE, 
otherwise it is FALSE. 

1. Collect the set of constraint expressions that apply to the entities in Gp. 

2. Replace each entity reference in the set of constraint expressions by TRUE if the entity is a member of Gp, 
otherwise replace the entity reference by FALSE. 

3. Treat the resulting set of constraint expressions as logical expressions and evaluate them. 

4. If any expression evaluates to FALSE then Gp is invalid, otherwise Gp is valid. 

That is the end of the checking algorithm. 

3 Evaluated set algorithm 
The checking algorithm may be used as a basis for an algorithm to determine the evaluated set of a supsub graph. 

1. Calculate the power set Pg of the supsub graph G. This contains all possible entity combinations Gp available 
for G. For n entities Pg will have 2n - 1 members.  By definition, every Gp in Pg will meet the tentative validity 
criterion specified in 2.3. 

2. For each Gp in Pg, evaluate the constraints on G as specified in 2.4.  If Gp is invalid, delete it from Pg. This 
results in a reduced set, say Eg. 

For efficiency purposes, the set elimination may be performed during the calculation of the power set. 

Depending on the exact structure of the supsub graph the size of the reduced set Eg will be somewhere 
between n and 2n–1. If the graph is a binary tree, the size of the reduced set will be approximately proportional 
to 1.5n

 . 

3. The members of Eg form the evaluated set for G. 
 


