all comments for ISO 10303-11: 1994/DAM1
Date : 2001-10-17

Id
Clause
Location
Type
Comment
Proposal
Concensus?

FR1
CLAUSE: 7.6

(P. Huau, GOSET)

minEd
'g' missing in the title

accept

FR2
CLAUSE: 7.6

(P. Huau, GOSET)

minEd
The note does not regard ISO 10303-11 but ISO 10303-21.
Remove the note.
accept

FR3
CLAUSE: 8.4.1

(P. Huau, GOSET)

minTe
The second sentence ("only valid values) is wrong when considering the concept of Extensible_enumeration. When considering an extensible enumeration, the set of valid names is not bounded; the only thing sure is that it includes the names listed.

reject

The sentence is correct, but may need clarification in the case of extensible enumerations, in which the set of names is defined by a set addition of the initial set and all extensions.

FR4

accepted in principle
CLAUSE: 8.4.1

(P. Huau, GOSET)

MajTe
It is not clear how an enumeration_id can have several occurrences in the domain of a single enumeration. The example 34 does not correspond to this case.

Provide an example of multi occurrences of an enumeration_id in an enumeration.
reject

Add text and Venn diagrams from Edition 3 to clarify this point.

FR5

accepted in principle
CLAUSE: 8.4.1

(P. Huau, GOSET)

MajTe
I disagree with example 34. The enumerations stop_light and canadian_flag do not create the same enumeration items but two enumeration items that have the same enumeration_id. A proof of this statement is that the suite of the specification requires that if 'red' is referred, it shall be prefixed either by stop_light or by canadian_flag.
Correct the example.
reject

FR6
CLAUSE: 8.4.2

(P. Huau, GOSET)

MajEd
The first sentence is quite unclear and is useless. In addition, clause 8.4.2 does not define what is a Select type.

Remove first sentence. Add a sentence stating that a select type is a type that enables a choice among several named data types.

accept

FR7
CLAUSE: 8.4.2
(P. Huau, GOSET)

accepted

MajTe
As defined in the paragraph before the syntax section, the constraint GENERIC_ENTITY is useless as it can only reflect the characteristics of a select type whose list only contains entity data types. Writing generic_entity does not constrain the select type, it just reflect a characteristics.

On the other hand, bullet (e) after the syntax section gives another meaning to Generic_entity.

Give only one meaning to generic_entity, i.e. remove the construct generic_entity or define it such that, when it is specified, only.

accept

Generic_entity only used to constrain extensible selects, requires change to syntax also

FR8
CLAUSE: 9.2.3.4

(P. Huau, GOSET)

rejected

MajTe
The way the construct RENAMED works is not explained.

E.g., can an attribute alias name be used and prefixed as any other attribute name?

e.G., in the following case:

ENTITY point; x : NUMBER; y : NUMBER; END_ENTITY;

ENTITY integer_point SUBTYPE OF (point); SELF\point.x RENAMED integer_x : INTEGER; SELF\point.y RENAMED integer_y : INTEGER; END_ENTITY;
Can we define:

ENTITY constant_x_point SUBTYPE OF (interger_point);

SELF\integer_point.integer_x RENAMED fixed_x:INTEGER;

WHERE

WR1: fixed_x=0;

END_ENTITY;

Clarify definition and constraints of the construct RENAMED
reject

Add words to second bullet of 9.2.3.4 explaining that it is an attribute

FR9
CLAUSE: 9.7

(P. Huau, GOSET)

rejected

MajTe
While use and processing in checkers of the constraint TOTAL_OVER promises to be uneasy, the actual advantages it provides are unclear.

In addition, this constraint may create problems when new subtypes will need to be created, either directly below the supertype or for subtypes that would inherit also from other supertypes.
Remove this new constraint or justify with examples why it is needed and why implementors shall pay the price of its inclusion in Express capabilities
accept

New examples to be added, propose total_over (male, female)

UK-11-1

accepted
EXPRESS-G Diagrams

Major Technical
There is no standard way for showing inverse attributes in EXPRESS-G, which are not direct (simple) inverses of explicit attributes. Inverse attributes of this type are important, especially where extended selects are used to define the explicit attribute, and the inverse carries important information.
I suggest that we introduce a new graphical construct, to support the display of such inverse attributes. The glyph itself should be structured as follows:

An inverse attribute is denoted by a normal line linking the entity in which the inverse attribute is defined and entity (or object_proxy, reference or use representing the entity) which represents the target of the inverse attribute. The target of an inverse attribute may be the entity declaring the explicit attribute, for which this is an inverse, or a subtype of that entity.

The end of the line connected to the entity which contains the inverse attribute is signified by an open circle.

The end of the line connected to the target entity has no end style.

The name of the original explicit attribute and the entity it is declared in is placed adjacent to the line within parenthesis in the form "(entity_name.attribute_name)".

The characters INV in parenthesis, i.e., (INV) are placed before the name of the inverse attribute, which is also placed adjacent to the line.

If the inverse attribute is constrained either by a where rule or a unique rule the attribute name is preceded by a superscripted asterisk *.

If the attribute is defined by an aggregation datatype then the aggregate is denoted as given in D.5.2, following the attribute name.

If the inverse attribute is a redeclared attribute, then it shall include the characters RT in parenthesis, i.e., (RT) before the (INV) characters. If in this redeclaration the attribute is renamed, then the new attribute name follows the original name, these being separated by the greater than symbol (>).
accept

UK-11-2
Schema versions

Major Technical
The DAM has introduced a major new idea with the inclusion of schema version identifiers. What is given in the language is, however, open to significant abuse since the language introduces the idea but refuses to give rules under which the version identifier can or should be used, espescially in the area of interface statements and name spaces. For example is it now possible to have two schemas named the same but with two different version identifiers in the scope defined by the syntax grammar rule? Is there a graphical representation of the version identifier, etc.
The DAM should either complete the work in this area and provide answers to these questions, or remove the schema version identifier. My preference would be to complete the work.
reject

Schema versions are informative, need text clarifying that two schemas with same name (irrespective of schema versions) will cause a name clash.

UK-11-3

accepted
Base_type Syntax

Technical
The inclusion of generalized data types into the base types has had un-forseen results. The syntax is now ambiguous, resulting in Reduce/Reduce problems with each of the aggregation types, since they can be selected through aggregation_types or generalized_aggregation_types. By extending the base_types with generalized types we also allow the constants to be declared to be of type GENERIC!, and the non-generalized aggregation types can define their element types as generalized.

Return base type to it's original definition, and change the type used to declare explicit and derived attributes from base type to parameter type. This allows constants and the non-generalized aggregates to return to their original meaning. It is also suggested that 8.6.1 and 9.7.1.1 clarify the meaning of generalized and instantiable types to ensure agreement between users and implementors. Table 7 would also need update.

accept

UK-11-4
ABSTRACT syntax

Technical
The syntax, as currently defined, allows us to declare the following:

ENTITY foo ABSTRACT ABSTRACT SUPERTYPE;

...

Since the first ABSTRACT represents the an abstract entity, the second represents the now depracated means of defining and abstract supertype.
Return the entity_head rule to it's original state, change the supertype_constraint rule to the following:

supertype_constraint = abstract_entity_declaration | abstract_supertype_declaration | supertype_rule .

and add the following rule:

abstract_entity_declaration = ABSTRACT .
accept

UK-11-5

agreed
Generic_entity

Technical
The Generic entity data type is defined in the syntax and other parts of the document but is not clearly defined with it's own sub-clause like the other generalised data types.
This needs adding as clause 9.5.3.3 and move type_label to clause 9.5.3.4.
accept

UK-11-6

agreed
Generic entity and attribute re-declaration

Technical
The proposed change to 9.2.3.4 is not sufficient. The first new bullet point should also allow for a generic_entity attribute being redeclared as a specified entity data type. Also the second bullet point added in TC2 should be modified to state that an attribute which defined by a supertype can be redeclared to be a non-extensible generic_entity select of subtypes of the original entity.

accept

UK-11-7

rejected
Generic entity type label

Technical
To allow for advanced type checking capabilities, the Generic entity data type should include an optional type label, so the syntax rule becomes:

404 generic_entity_type = GENERIC_ENTITY [':' type_label] .

This would also need describing in clause 8.5

accept

UK-11-8
Allowing generalized types as attributes

Technical
Clauses 9.5.3.1 through 9.5.3.4 (new) should ensure that the rules and restrictions allow the generalised types as the types of explicit and derived attributes

accept

UK-11-9

rejected
Labeled data types in abstract entities

Technical
Since we can now have attributes of type GENERIC in abstract entities, is it allowed for such data types to be labeled? If so how are these labels interpreted?
I suggest that type labels are allowed in abstract entities, in that it may provide a more consistant way of defining compatibility between a number of attributes declared in that entity, and provide a constraining mechanism on instantiable subtypes. The recommendation is that the first attribute which uses a type label declares it, other uses of the same type label are references and these data types shall be compatible with the declared type.
reject

UK-11-10

accepted with changes
Subtype constraint graphics

Technical
The current DAM identifies two graphical symbols for subtype constraints; the circle with T and circle with ABS. There is no place to the name of the subtype constraint to be specified, and for a subtype constraint which only specifies total over, there is no indication of which supertype this is a constraint for. The current proposal does not allow for easy understanding of how these components relate to each other. The elements of the graphical representation are suitable, but need to be tied together more closely.
I suggest that the circle shape to represent the subtype constraint is appropriate. However, the subtype constraint should indicate it's name, so this should be placed in the circle. The supertype to which the subtype constraint is applicable should be indicated by a line with a distinct style (perhaps a dashed line with an open arrow pointing to the supertype). The indication of abstract could easily be covered by having the text "(ABS)" before the name, like in the current entity glyph. Total over could be covered just by lines from the subtype constraint to the subtypes, these lines could by styled as currently suggested in the DAM (i.e. normal lines with open arrow heads at the subtype end)
accept

Change to an ellipse (allowing circle as degenerate form) and * if subtype constraint present (including ONE OF).

UK-11-11
Tagged comments

Minor Technical
In the proposed EXPRESS edition 3 we included the capability to have tagged comments to enable improved linkage between the comments and the items they were commenting. As we move into more data driven documentation via XML (including XMI) etc it is assumed that easier association of comments to the items would enable automated publishing in a number of formats. This change has little effect on current implementations since the tagging is done within the comment itself, so should be an easy addition for those who want the capability and have no impact for those who do not want the capability.

accept

Need to use information from edition 3 including some syntax changes.

UK-11-12
Syntax numbers

Minor Technical
The grammar rule numbers are supplied in the Language Reference Manual as a means by which a reader can cross reference the grammar rules. The DAM proposes a number of new productions with new production numbers starting with arbitrary values. This in itself is not a problem. However, there is the intent to publish the DAM as the second edition of EXPRESS as a complete document, in which case the arbitrary numbers could cause problems for the reader of this document. Since the document can be published with the grammar rules in number order (in which case they are not in alphabetic order) or in alphabetic order (in which case they are not in numeric order).

It is proposed that in the DAM document we place a note specifying that the arbitrary numbers used in the DAM will not be used in any complete publication as edition 2, in which the grammar rules will be fully incorporated and a new numer sequence given.

EXAMPLE:

Current DAM

350 BASED_ON = 'based_on' .

Should be inserted between BAG and BEGIN

New E2

11 BAG ...

12 BASED_ON ...

13 BEGIN ...

accept

UK-11-13
Syntax rules

The syntax rules in EXPRESS were developed based on the principle that if order was not required, then the rules should give the productions in alphabetical order, to ease reading. The DAM does not follow this approach, and the following should be changed:

concrete_types = aggregation_types | simple_types | named_types .

should be

concrete_types = aggregation_types | named_types | simple_types .

declaration = entity_decl | subtype_constraint_decl | function_decl | procedure_decl | type_decl .

should be

declaration = entity_decl | function_decl | procedure_decl | subtype_constraint_decl | type_decl .

generalized_types = aggregate_type | general_aggregation_types | generic_type | generic_entity_type .

should be

generalized_types = aggregate_type | general_aggregation_types | generic_entity_type | generic_type .

accept

UK-11-14
Syntax fix-ups

Minor Technical
The following syntax fix-ups have been noted in the past, but have not been changed in TC's due to minimizing changes in these, since there are a number of syntax changes proposed in the DAM the following should also be considered for inclusion:

Entity head marks subsuper as optional, but all the contents of that production are optional also, as a matter of style it is recommended that subsuper be marked as mandatory in entity head. No effect on syntax but may help parser writers!

Similarly algorithm head should be mandatory in function decl, procedure decl and rule decl.

accept

DE 1
9.2.4

Major

Technical
A "weak" ONEOF is needed. The existing ONEOF is "strong". Assume a supertype entity A with subtypes B and C and a further entity D which is a subtype of B and C. It must be possible to declare B and C to be weak oneof, so that A&B&C is an invalid complex, but A&B&C&D is valid. There are several such cases in the STEP integrated resources.
There are several possible solutions, e.g.:

a) Introduce a new keyword “WEAK_ONE OF”

b) Make all ONEOFs “weak” by default. This is most pragmatic. We are in favor of this.
reject

This was not identified as a requirement for modules, so is outside scope.

DE 2
9.7 and

Annex C
c)
Major

Technical
By default all subtypes of an entity are ANDOR. A mechanism is needed to declare all to be "week oneof". There are several candidates in the IR where all subtypes are practically week ONEOF, such as shape_aspect, shape_aspect_relationship, shape_representation and others. A main characteristic of the "weak oneof" is that no complex entity data types, consisting of a supertype and two "weak-oneof" subtypes is vaild. But a complex entity data type, consisting of a supertype, two weak-oneof subtypes and a sub-sub-type which multiply inherited the two subtypes is vaild.
An empty “ONEOF()” list can be used to clearly indicate this. Then no new keyword is needed, e.g.

ENTITY abs SUPERTYPE OF (ONE OF());
….
END_ENTITY;
reject

See DE1

DE 3
9.2.4

Technical
Introduce the CONNOTATIONAL SUBTYPE as defined in WG11N105
See WG11N105
reject

Although I have some sympathy for this position, it was explained to the modules developers and they said they would not need this construct, so outside scope.

DE 4

rejected
7.4

Technical
Support the hyphenation of long express-ids.
Allow hyphenation after underscore “_”.

 ENTITY aaa_-

 bbb;

 END_ENTITY;

should be equivalent to

 ENTITY aaa_bbb;

 END_ENTITY;
reject

DE 5

Technical
Support the inverse notation defined in EXPRESS-X also for the EXPRESS Amendments
See wg11n110, clause 10.8 “Backward path operator”
reject

Inverse attributes are already complex, having another alternative way of specifying them will add to the confusion, not reduce it.

DE 6
12.6.7

Technical
Allow the usage of group_qualifier for the variable defined by a QUERY. Also make clear that the query-variable has a defined type which is used to solve possible name conflicts of attributes of the concreate entity instance.

reject

This is declaring a variable, there may be additional consequences if we start allowing x\ent in all places we declare variables and parameters. If we need to use the group qualifier, why can't we use it in the expression, using the variable?

DE 7
Originally 3.2.2

(TC 3.3.2)

Technical
Change the definition of "complex entity instance" to make clear, that every "entity instance" is also a "complex entity instance".

reject

I don't see what this change gives us, or what confusion it resolves.

DE 8
3.2

Technical
Add definitions for "(single) entity data value" and "complex entity data type value". Make clear that the assignment operator transforms a "complex entity data type value" into a "complex entity instance".

accept

DE 9
3.2

Technical
Add definitions for "multi leave complex entity (data type)" and "multi leave complex entity (data type) instance".

reject

I don't see the value in adding a definition for a term that is not used in the standard.

DE 10
3.2

Technical
Define the term "complex entity" to be a synonym for "complex entity data type".

reject

DE 11

Technical
The usage of the generic data type GENERIC and AGGREGATE in functions and procedures is strongly restricted in combination with "type label". It is unclear whether or not these restrictions apply also to the new GENERIC_ENTITY. Probably the "type label" restrictions can be relaxed for all types.

reject

I think we should add the type-label capability to generic_entity usage.

DE 12
All

Major Editorial
Publish the EXPRESS Amendment as a complete new document.

accept

This was always our intention

DE 13

rejected
8.5, 8.6.1 and 9.2.1

Major Technical
Allow the usage of attributes of type GENERIC_ENTITY or some aggregate of this also for non-abstract entities. Support the redeclaration of attributes of GENERIC_ENTITY to some entity data type or select of entity data types.

reject

There is no support for having generalised types for attributes in instantiable entities.

DE 14
9.7.1 and

Rule 197

Major Technical
Don't have two different kinds of abstract for entities. It is ok that the old ABSTRACT SUPERTYPE can now also be defined in the subtype constraint, but don't support the new ABSTRACT entity. This functionality can easily be covered by the existing ABSTRACT SUPERTYPE.

reject

Abstract entity is a different concept to abstract supertype. It will cause more confusion if we use the same syntax but change the meaning.

DE 15
Annex D and K

Technical
Don't deprecate the "abstract supertype" keyword for entities and its symbol ABS in EXPRESS-G.

reject

See DE14

ISO 1
Throughout the document

Correct the running headers and footers as indicated on the attached pages.

accept

ISO 2
Introduction

The first two paragraphs should be deleted for the following reasons:

—
As yet there is no Corrigendum 2 published for this standard. Furthermore, a document identification number such as "ISO 10303-11:1994/Cor.1:1999" corresponds to the corrigendum only; it does not signify "ISO 10303-11:1994 as corrected by Cor.1:1999". Therefore the statements "This document amends ISO 10303-11:1994/Cor.2:2001..." and "The modifications to the text of ISO 10303-11:1994/Cor.2:2001..." signify that this amendment applies only to the (not yet published) Corrigendum 2, which is clearly not correct.

Corrigenda and amendments are normally cumulative, i.e. it is assumed that the modifications specified in this amendment take into account corrections/modifications specified in any published corrigenda and amendments to the same standard. Therefore there is generally no need to specify that the "amended document" supersedes a previous version.

—
If there is only one kind of modification given in the amendment, it does not seem necessary or useful to identify it with a symbol. Furthermore, the statement that modifications marked with " ♦ (CHANGE)" correspond to changes to the requirements of ISO 10303-11:1994 is incorrect, as the addition of informative annexes and of a bibliographic reference cannot be qualified as changes to the requirements of the standard.

accept

ISO 3
Main text

Page 1 (first page of main text): Include title (title of standard + "AMENDMENT 1").

accept

ISO 4
Main text

Any modifications to the standard's table of contents (i.e. due to the addition or deletion of clauses or subclauses, or changes to existing titles) should be indicated in the text of the amendment.

accept

ISO 5
Main text

Any modifications to the standard's foreword (i.e. due to addition or deletion of annexes, or a change in the status of an annex) should be indicated in the text of the amendment.

accept

ISO 6
Main text

For the reasons indicated above, " ♦ (CHANGE)" should be deleted throughout the text.

accept

ISO 7
Main text

The term "clause" refers to the first level of subdivision of the text (e.g. "clause 1", "clause 6", etc.). All subsequent levels of subdivision (e.g. 7.2.1, 7.6, 8.4, etc.) are subclauses.

accept

NSF 1
9.2.1 / 9.5.3.1

MINOR, TECHNICAL
Concerning aggregate_type also 9.5.3.1 (rule a)) needs to be updated so that aggregate_types can be used in the definition of attributes for ABSTRACT entities. Bring in-line with updated 9.2.1. Same for generic and general aggregation data types.
Update 9.5.3.1; look for further rules that may need update due to the extended use of generalized data types.
accept

NSF 2
9.2.1.3

MINOR, TECHNICAL
In TC2 a restriction has been introduced concerning valid types for INVERSE: "The name of the explicit attribute in the entity defining the direct relationship shall be unique within the subtype/supertype graph of that entity." This restriction is an unnecessary limitation. The attribute could easily be qualified to the correct attribute by the name of the supertype using a group qualifier.
Remove the restriction that was introduced by TC2.
accept

Will need to introduce new syntax for inverse attributes to allow such qualification, i.e. inverse inv: sub for sup1/attrib

NSF 3
7.2.1

MINOR, TECHNICAL
ISO 10303-11:1994 reserves keywords for future use. As Express 3 is cancelled and as the use of reserved keywords reduces the value of the language, these should be removed.
Remove keywords that are not used by ISO 10303-11.
accept

The reserved keywords were never used in Ed3 anyway!

NSF 4

rejected (OK)
7.2 and others

MAJOR, TECHNICAL
ISO 10303-14 is based on the edition 1 of ISO 10303-11. The new features that are introduced by the amendment may conflict with the current Part 14. Provisions may be required to ensure compatibility between P11 and P14.
Harmonize the new features of the amendment with ISO 10303-14.
reject

There is no keyword conflict. There is a need for Part 14 to be updated to harmonise with Ed2.

NSF 5

accepted
annex

MAJOR, EDITORIAL
ISO 10303-11:1994 does not unambiguously specify the algorithm for the generation of a longform schema from a shortform and a set of resource schemas.
Add an annex that describes the shtolo-algorithm.
accept

E2 short to E1 long and E2 short to E2 long to be provided as annexes

NSF 6
new clause 7.6

MINOR, EDITORIAL
The note seems to specify normative matters; the format ”v;cc” is not specified anywhere else.
Add normative text to specify the format of the language version identifier.
reject

Not ASN.1 syntax

NSF 7
update to clause 9.3, second change

MINOR, EDITORIAL
The current amendment text says: ”For schemas defined in ISO 10303 and other standards ...”. Which ”other standards” are meant? Is this important in this context?
Remove ”and other standards” or add after that text ”that are produced in ISO TC184/SC4”.
accept

I would suggest that we remove all references to standard schemas, this is a useful feature in non standards development work also!

NSF 8
new clause 9.7.2, rules and restrictions items b) and c)

MINOR, EDITORIAL
The text says for item b): ”specified in the TOTAL_OVER constraint ..” and for c): ”... in the TOTAL_OVER specification.”. What is supposed to be required in case of several TOTAL_OVER constraints for the same supertype?
Improve the text to refer to several TOTAL_OVER constraints. Especially to the wording in c) clarifications may need be added.

Update the list to start with a).
accept

NSF 9
new clause B.3

MINOR, EDITORIAL
The amendment says: ” A multiply inheriting subtype is one which identifies two or more supertypes in its subtype declaration.” The subtype may have several subtype declarations. They together may identify the subtype as a multiply inheriting one.
Use plural (declarations). Consider the consequences for the following chapters.
accept

NSF 10
new clause B.3, figure B.3

MINOR, EDITORIAL
The Express-G diagram shows an abstract supertype. The used notation is not as the one in figure D14b.
Apply the updates due to this amendment in examples and figures.
accept

NSF 11
clause D

MINOR, TECHNICAL
Express-G diagrams seem to use only horizontal and vertical lines. This, however, is not specified to be normative. It should be avoided that anyone comes up with a different way of drawing Express_G diagrams.
Specify as normative that Express-G diagrams shall only use horizontal and vertical lines – except for notations like the TOTAL_OVER (if this will be kept).
reject

We deliberately pointed out in notes that any line angle was allowed such as curves, this would contradict the freedom we have allowed so far.

NSF 12
update to clause D5.5, D14.b

MINOR, TECHNICAL
The amendment proposes to use a new type of symbol: encircled text. This adds to the complexity of Express-G. Graphical Express is to a large degree read by non-modellers: it is a tool for the communication with users (implementors, engineers).
Cancel the new type of symbol; stick to text in parenthesis within data type boxes.
reject

The new symbol is required since these are constraints which may be applied to non-entity symbols, such as use/reference symbols etc. (Thanks for the reference to GraphicalEXPRESS!)

NSF 13
update to clause D5.5, D14.c

MINOR, TECHNICAL
The amendment proposes to use the abbreviation AE to indicate that an entity datat type shall be abstract. For supertypes the abbreviation ABS is used. This seems to make life unnecessarily complicated.
Replace AE by ABS – also for entity data types.
reject

There are two constraints, best to separate in the graphics.

NSF 14
update to clause D5.5, D14.d

MINOR, TECHNICAL
Also for the TOTAL_OVER an encircled text has been proposed as the graphical symbol. The concept of identifying a group of total-over subtypes seems to be close to the concept of oneof subtypes. The same notation should be used for the two.
Use the same principle graphical notation for TOTAL_OVER and ONEOF. Avoid the introduction of a new graphical sysmbol.
reject

See UK10

NSF 15
update to clause D5.5, D14.d

MINOR, TECHNICAL
If the TOTAL_OVER notation will use lines that point to superclass and subclasses, consider and explain the use of off-page references.
Allow TOTAL_OVER lines to end in off-page references as well as entity data type boxes.
accept

Sweden

The pictures in the document are not satisfactory (black squares)

reject

Problems with acrobat reader version used?

USA 1
General

Editorial
Where syntactic objects, particularly identifiers, appear in the text of Examples, Notes, etc., they should be set off by a change of font, to improve readability. This is particularly the case when the syntactic object is an identifier that is also an English word, e.g. "left" in example 34. (cf. ISO 10303-11:1994)

accept

USA 2
7.6
para 1
Technical
"This amendment" will have no meaning if the amended standard is published with the changes.

The purpose of this clause is to label schemas with the version of Express to which they conform. But an ISO revision replaces the previous version of the standard. And there is no reference for the meaning of the previous version identifier. Text distinguishing versions can only be meaningful if both "versions" have explicit designations, such as conformance classes, in the revised standard.

It suffices to have version 4 schemas so labelled, so that an older compiler will diagnose the version mismatch on encountering the version_id.
Strike the last two sentences of para 1 (from "This amendment … shall be specified.") and replace them with:

The language_version_id shall appear in any syntax element conforming to this revision of this Part of ISO 10303. For upward compatibility, a conforming processor shall accept a syntax element in which the language_version_id does not appear.
accept

Will require changes to the section dealing with conforming parsers

USA 3
7.6
para 1
Technical
The text says that the language_version_id specifies the version on which "a schema" is based, but it is not part of the schema declaration. It seems to be a kind of "file header" that applies to all the schemata in the "file" (aka "syntax").
In the first sentence, replace "a schema" with "a set of schemata".

In the second sentence, replace "a schema" with "any schema in the syntax element."
accept

USA 4
7.6
title
Editorial

change "lanuage" to "language"
accept

USA 5
7.6
Note
Editorial
The form "v;cc" is not a permissible form for an ASN.1 "name and number" element in an object identifier. And it is not the form used in the value specified in SR 405.
Strike this Note.
accept

USA 6
7.6
Para 1
Technical
"When a schema contains any declaration added to EXPRESS by this amendment, the language version identifier shall be specified."

The interpretation of this sentence with respect to clause 8.4 is difficult. The amendment replaces the entire syntax of the SELECT and ENUMERATION structures appearing in a type declaration. Clearly the type declaration is not itself added, nor are ENUMERATION and SELECT types per se. What is actually added are optional keywords EXTENSIBLE and BASED_ON.
Strike the last sentence of para 1 and replace it with:

The language_version_id shall appear in any schema declaration containing any of the following keywords: EXTENSIBLE, BASED_ON, WITH, GENERIC_ENTITY, SUBTYPE_CONSTRAINT, END_SUBTYPE_CONSTRAINT, TOTAL_OVER, RENAMED.
accept

USA 7
8.4
para 1
Editorial
The following sentence is poorly stated: "An enumeration_id is used to designate these names that are referred to as enumeration items."
Replace "An enumeration_id is used to designate these names that are referred to as enumeration items."

with: "Each name in the domain is referred to as an enumeration item, and is designated by an enumeration_id."
accept

USA 8
8.4.1
para 3
Editorial
Group and separate definitions.
In 8.4.1, paragraph 3:

1. Move the text "An extensible enumeration data type is a generalisation of the enumeration data types that are based on it. An extensible ENUMERATION data type is specified using the EXTENSIBLE reserved word." to follow the first sentence of para 3 and follow it by a paragraph break.

2. Move the text "An ENUMERATION data type based on an extensible ENUMERATION data type is specified using the BASED_ON reserved word." to follow the (currently) second sentence of para 3 and follow it by a paragraph break.

3. The remaining two sentences, beginning "An enumeration data type may be both…" and "An extensible ENUMERATION may be specified …" form a new paragraph that follows the above two.
accept

USA 9
8.4.1

Editorial

In the paragraph and Note following the syntax box, change "pre-qualify" to "qualify" (two places).
accept

USA 10
8.4.1

Question
Is an enumeration type "based on" an extensible enumeration type if it is related through some level of BASED_ON relationship with an extensible enumeration type? I.e. is "based on" transitive?

accept

Based-on should be transitive

This mean the following:

Consider this case

EXTENSIBLE A

EXTENSIBLE B BASED_ON A

C BASED_ON B

C includes all items from A, B, and C

USA 11
8.4.1

Editorial
The phrase "enumeration type based on an extensible enumeration type" is cumbersome, appears with slight variants in many places, and inadvertently suggests that there might be enumeration types based on something else.
Define a term, e.g. "extended enumeration type", and use that term in place of all appropriate occurrences of the phrase "enumeration type based on an extensible enumeration type".
accept

Not sure whether “extended enumeration type” is clear enough; both are “extended”. I would call the one that can be extended ”exensible” and the other one ”extending”.

USA 12
8.4.1
Rule b
Editorial
R&R rule b - "Only enumeration data types whose underlying data types are extensible enumerations may be extended." - Enumeration data types do not have underlying types. This should be reworded.
Change rule b to: "An enumeration data type may be extended only if the reserved word EXTENSIBLE is specified in its definition."

Remove rule c. The above covers it.
accept

USA 13
8.4.1
Rule c
Editiorial
Rule c should state the fact, not a possibility.
In 8.4.1, rule c, change "may itself be" to "is itself".
accept

USA 14
8.4.1
Rules d, e
Technical
Is it the intention that the type referenced in BASED_ON must be an extensible enumeration (as opposed to a non-extensible one)? If so, then say so in the R&Rs.
As a Rule, state:

"The type_ref in an enumeration_extension shall refer to an extensible enumeration type."
accept

USA 15
8.4.1
Rules f and g
Editorial

In 8.4.1 rules f and g, after "specify" insert "a non-empty list of".
accept

Will require a change to the syntax since extensions are not forced to specify new items!

USA 16
8.4.1
Rule h
Editorial
It is the declaration that includes the WHERE rule, not the defined data type.
In 8.4.1 rule h, change "defined data type" to "type declaration"
accept

USA 17
8.4.2
Paragraph 3
Editorial
Group and separate definitions.
In 8.4.2, paragraph 3:

1. Move the text "An extensible SELECT data type is specified using the EXTENSIBLE reserved word." to follow the first sentence of para 3 and follow it by a paragraph break.

2. Move the text "A SELECT data type based on an extensible SELECT data type is specified using the BASED_ON reserved word." to follow the (currently) second sentence of para 3, and follow it by a paragraph break.

3. The remaining two sentences, beginning "A select data type may be both…" and "An extensible SELECT may be specified …" form a new paragraph that follows the above two.
accept

USA 18
8.4.2
Rule d
Editiorial
Rule d should state the fact, not a possibility.
In 8.4.2, rule d, change "may itself be" to "is itself".
accept

USA 19
8.4.2
Rule e
Technical
Rule e restates a restriction made in the paragraph above the R&Rs. The better place to state this restriction is its earlier appearance, above the R&Rs.

The second sentence in the paragraph above the R&R ("In this case all select...") is not quite correct (it doesn't allow selects containing selects of generic_entity).
Remove rule e.

Replace the second sentence in the paragraph above the R&R with: "In this case, all select elements must be generic-entity elements, where generic-entity element is defined as being either an entity data type or a select of generic-entity elements.
accept

USA 20
8.4.2
Rules f and g
Editorial

In 8.4.2 rules f and g, insert "non-empty" before "select list".
accept

USA 21
8.6.1
Syntax rule 171
Technical
Rule 171 leads to ambiguity in the parse:

171 base_type = concrete_types | generalized_types .

LIST OF INTEGER appears to be both.

concrete_types = aggregation_types

aggregation_types = list_type

list_type = LIST OF base_type

base_type = concrete_types

concrete_types = simple_types

simple_types = INTEGER

generalized_types = general_aggregation_types

general_aggregation_types = general_list_type

general_list_type = LIST OF parameter_type

parameter_type = simple_types

simple_types = INTEGER

So how do I know whether I have a concrete_type or a generalized_type, and whether the restriction "The generalized data types shall only be used as base data types in an abstract entity" (also in this clause) applies?
This problem has existed in Express since 1994, because the "base type" of general_aggregation_types is parameter_type, and production 253 parameter_type and production 171 base_type both allow named_types and simple_types. But it was never previously necessary to distinguish them.

a. Replace rule 253 with:
parameter_type = base_type .

b. In rules 213, 214, 215 and 217, replace "parameter_type" with "generalized_types".

c. In rules 165, 170, 237, and 285, replace "base_type" with "concrete_type".

(do not change rule 161)

With these changes, LIST OF INTEGER is only a concrete_type, and SET OF GENERIC_ENTITY is only a generalized_type.
accept

Need to ensure constants are concrete types NOT base types in this case. Why shouldn't aggregate type be based on generalized types? There was no issue with the original syntax since base types and parameter types did not come together at any point in the syntax.

USA 22
9

Editorial

"principle capabilities" should be "principal capabilities"
accept

USA 23
(9.1)
Syntax rule 401
Editorial

For clarity, it may be useful to replace existing Rule 309 with:
underlying_type = concrete_types | constructed_types .
accept

USA 24
9.2.1

Technical
There does not seem to be a rule that prevents an extensible enumeration or select type with an empty item list from being used as the type of an attribute, etc., when no non-empty extension has been specified in the schema.

An extensible type without an item list is effectively an abstract type until an extension with an item list is specified in the schema, or in some schema which USEs the extensible type. On the other hand, an entity containing an attribute that is declared to be of an "empty" extensible type is not necessarily ABSTRACT. What is required for its instantiability is the declaration in the "exchange schema" of a non-empty extension of the extensible type. But it is possible that the exchange schema interfaces the entity and the "empty" extensible type from one schema and the non-empty extension from another. So it is difficult to write a rule for this.
In 9.2.1, add an additional paragraph following the proposed change:

If the data type of an explicit attribute is an extensible enumeration type for which no enumeration items are specified, the entity cannot be instantiated unless some extension of the enumeration type is declared with at least one enumeration item. If the data type of an explicit attribute is an extensible select type for which no select_list is specified, the entity cannot be instantiated unless some extension of the select type is declared with at least one named type.
accept

USA 25
9.2.1

Technical
"at least one subtype" is not a sufficient condition for proper instantiation.

And the word "must" should be "shall" if this is to remain normative, but it appears to be an incorrect restatement of the requirement in 9.7.1.1.
Make the proposed new sentence a Note, change "in at least one subtype" to "for every instantiable subtype", and follow it with "The redeclaration can occur directly in the instantiable subtype or in one of its supertypes. (see 9.7.1.1)."

accept

USA 26
9.2.4
Note
Editorial
References to "this amendment" in the text are meaningless if the amendment is integrated into a revised edition of the standard.
In 9.2.4 replace the first sentence of the Note with:

For upward compatibility with previous editions of ISO 10303-11, the declaration of subtype/supertype constraints within the declaration of an entity is permitted.

And replace "in new schema development is encouraged" with "is preferred."
accept

USA 27
9.2.4
Note
Editorial
The subtype/supertypes constraints being deprecated are less clear because of the structure of clause 9.2.3 and 9.2.4. In particular, the "subsuper" element, and the text of clause 9.2.4, includes SUBTYPE declarations, which are not being deprecated!
a. In the syntax box in 9.2.3, delete all productions except 294.

b. In the syntax block in 9.2.4, delete production 294.

c. move the first sentence of 9.2.4 to 9.2.3.1.

Then what is being deprecated is "supertype constraints" as defined in 9.2.3.2 and 9.2.4.
accept

USA 28
9.3
Note
Editorial
"Identifier" is misspelled. .
In the Note in 9.3, replace: "idenfier" with "identifier".
accept

USA 29
9.7
Paragraph 1
Editorial

In 9.7, para 1, 2nd sentence, change "are" to "is" to match "concept".
accept

USA 30
9.7

Editorial

In the first two bullets below the syntax box, replace "if" with "that".

In the second bullet, replace "total over" with "total_over" (the syntactic object) or to "total coverage" (as in 9.7.2).
accept

USA 31
9.7.2
Paragraph 1
Editorial
The intended meaning of "A supertype entity may be declared to be fully defined for one context by a collection of its subtypes." is only apparent from the examples.
Replace the first paragraph with:
"A total coverage (TOTAL_OVER) constraint specifies that every instance of the supertype must be an instance of one or more of a given set of subtypes. That is, for a given context, the domain of the supertype is exactly equal to the set union of the domains of the named subtypes."
accept

USA 32
9.7.2
Paragraph 2
Editorial
The first sentence does not parse.
In the first sentence following the Note, replace "In the case of two or more subtype constraints specifying" with "If two or more subtype constraints specify". And replace "then" with a comma.
accept

USA 33
9.7.2
Rules and Restrictions
Editorial
The Rules and Restrictions list begins with "b."
Renumber the list.
accept

USA 34
9.7.2
Rule c.
Editorial
The wording of Rule c "Other subtypes, however defined or constrained, must always be combined with at least one of the subtypes in the TOTAL_OVER specification;" appears to specify a syntactic requirement, and this is not what is intended.
Replace rule c with:
"Instances of other subtypes, however those subtypes are defined or constrained, shall also be instances of one or more of the subtypes named in the TOTAL_OVER specification;"
accept

USA 35
9.7.2
Rule d
Editorial
Redundant wording
In rule d, strike "be constrained to"
accept

USA 36
12.2.1.5
Paragraph 2
Technical
The sentence "Value comparison of enumeration items in extensible enumerations and enumerations based on extensible enumerations shall be based on comparing the simple or prefixed reference to the enumeration items (see 12.7.1 and 12.7.2)." makes no sense. How can one compare values to/using syntactic references? The value of an attribute in a Part 21 file does not have the same syntactic form as the reference to the enumeration item in the schema.
Replace this sentence with:

For values whose data type is an extensible enumeration type or an enumeration type based on an extensible enumeration type, only comparison for equal or unequal is defined. Two such values are equal if they represent the same enumeration item, and unequal otherwise.
accept

USA 37
15.25
Step (a)
Editorial
The first bullet:
"- if V is a formal parameter, it is replaced by the corresponding actual parameter first;"
has always been meaningless. V is always a formal parameter of the TYPEOF function! And 12.8 specifies that the actual parameters are substituted for the formal parameters when the function is evaluated.

The intent here is that its type "(by declaration)" refers to the declared type of the syntactic object that appeared as the actual parameter to the function that calls TYPEOF, if any.
Replace the first bullet with a Note:

Note -- when the actual parameter to TypeOf was a formal parameter to some function being evaluated, the "type to which V belongs (by declaration)" is the type declared for the original actual parameter, or the result data type for the actual parameter expression as specified in Clause 12, and not the type declared for any formal parameter for which it has been substituted.
accept

USA 38
Annex C
Item c)
Editorial

Replace "algorighm" with "algorithm"
accept

USA 39
Bibliography

Editorial
Don Sanderson's name is misspelled.
Replace "SANERSON" with "SANDERSON".
accept

USA-40 accepted
General

Technical
Several extensions were proposed to support modular AP's. This included extensible selects and subtype constraints. However, at least 4 other features were also added to EXPRESS. It is not clear if any of these are required to support modularization, or are merely "nice to have".

Each EXPRESS extension affects one or more Part 20 series parts. Some, like GENERIC, appear to affect all Part 20 series parts.

The proposed amendment to EXPRESS should not be accepted as written, but referred for further study, as proposed in the Fukuoka resolution from the PPC meeting. The key issues which need to be clarified:

- Which extensions are required to support modularization?

- What is the impact of these required extensions

- What is the impact of the other "nice to have" extensions

- How can the extensions be re-packaged to support modularization

and minimize impact to the Part 20 series parts

- Identify resources who can support the required extensions to the Part 20 series parts
accept

Attributes of type generic to be removed.

page 20

