Methodology for Har monisation of Modules

by
Andriesvan Renssen
andries.s.h.vanrenssen@opc.shell.com
Verson 0.1
27 January 2001
(For review at 1 SO meeting In Funchal)
Reference: WG10 N331

Table of Content

I 1 10 [o 1 o SR SRRR
2. Specidisation of Modules (SUBLYPING)veeveereiieriecie e
3. Inheritance and &trIDULES............cooeeieriee e
4. INEEITA08 ENLITIES.....eiveivieieeiieee et sr b nrens

1. Introduction

This document discusses a proposa for amethodology for STEP Modules Harmonisation.
The proposa uses adraft Intelligent Schematics module(s) as an example.

2. Specialisation of modules (subtyping)

A complete harmonised set of modules should ideally consist of one integrated
specialisation/generalisation hierarchy of concepts. Thisimpliesthat every entity in a
modul e should be an explicit subtype of another entity in that module, or an explicit
subtype of an external entity (an entity externd to the module).

Harmonisation between modules therefore includes that concepts used in one module should
be subtypes of concepts used in another module.
From thisit becomes clear that a set of top level modules with top level entities (concepts) is
required. The modules dependency diagram of figure 1 illugtrates this requirement.

P&ID Intelligent

schematic
diagram

P&ID
symbol Architectural

library symbol

library
symbol
library

symbolisation

classification
of physical object
property
Concept of
Concept of physical physical
property property object object

»

> classification 17 Jan 2001

Control
diagram
symbol
library

Intelligent
schematic
diagram

schematic
diagram
Annotation
element

classification of Possession
property of

Concept of
annotation
element
properties

Figure 1, Dependency between modules

Figure 1 shows that an intdlligent schematics module depends on the existence of
schematics, which depends on various other concepts, such as classfication. So, amodule
might reved the need to define missing higher level modulesin order to complete the

hierarchy.
Thisisillugtrated by the draft part of an Intelligent Schematics module (seefigure 2).

see 1l 730000

RT) symbolised , Annotation element
.4 anything

r UoF 63
replesented™ e 50 730044
classified
physical_
object
see 62 2071 l" 731095 see50 1286 see 51 1217
(r reﬁentation\ inanimate_ classification_ n
epresentation | physical_ of physical_ |_Classifier_of 1705
of_object - ’ hvsical
L) | object] object physical_ -
I T — 1 object possession_of_|
| | O | | 1 aSpeCt
63 (2072 | 63 (730049 [RT) 63 () 1469 (RT) 63 O 1430 L)
symbqlisation_ L classified classificaii.on_ classifier of class_'of_ gb 2073
L] of_object_by \)W of_annotation_ m@ annotation_ -
annotation - element - element possession_of_|
clement element element spatial_aspect
specialization of Classification module
1999
symipoliser) possession_of_|
specialization of point_in_space|
Repr tation &3 63 see22E ; 730026
module (RT) possession_of (RT) —— . N
() possessor_point_in_space | possessed ANy | |
N of_point_ | by_annotation point_ of_annotation_ point_in_space]
of_ae. element of_ae. element
annotation_ = Ql)displaced O
element displacement
of_point_of_ s_eeZS 1772
annotation_ OH— displacement_
element - of_
specialization of Placement module (Point_in_spacg
see 7 1334
association
63 (5 1427 R
display_ see 50 730044
. of_annotation_ . . (])
O Ca”tlae;q element_on_ mform_anon :) phys_|ca|_
aNNOTElION it ormation camner object
carrier —

see 65 (5 610524 see 65 (5 610521 see 66 (5 610520

annotation_ annotation_ annotation_
point curve area

see 64 (l) 610425 see 67 (l) 610307 see 70 (l) 610554

_ connector_
annotation_ page_ feature_of
text connector annotation_

element

Figure 2, Annotation eement harmonised module

In figure 2, the module that needs to be harmonised is put in the context of its environmernt.
The module itself conggts of the part within the light green box. The entities outside that box
are ‘externd entities’ for the module. For example, individud annotation € ements (the 'ink
on paper’) can be classified according to the type of things they symbolise. Examples of
classes of symbols are: line, box, (shaded) area, text (annotation text), pump symbol, etc.
This classfication is defined by the entity classfication of annotation_element, which
appears to be a subtype of the entity classfication of physicd _object (which idedly should
exig aready in another module).

Smilaly, theentity class of annotation_element isa subtype of class of physica_object.
This subtype defines a subset of classes of physical objects that may vdidly by used to
classfy annotation dements. To define such asubset it usudly is sufficient to define only the
top of a sub-hierarchy, but sometimes the classes are congtrained to a "picklist” of classes.
In the latter case the picklist should be defined as an explicit congtraint on the instances of

the supertype class.

S0, harmonisation of the modul e shows the requirement that other modules should
exist for the higher level concepts from which the concepts in the module are
subtypes.

This suggests that it seems gppropriate to start from atomic modules that contain one
concept only and build molecular modules from that.

An example of an exigting hierarchy of conceptsis cdled STEFlib. It containsa
specidisation hierarchy with many concepts, including most concepts from which the
Intelligent Schematics module concepts are subtypes. It isnot just atraditiona classlibrary,
but it includes aso higher level concept entitiesin the hierarchy. As such is can be viewed as
adatamodel concept hierarchy. It is proposed as a Sarter set of a concept hierarchy for
modules. It is available on Awww.steplib.cony.

3. Inheritance and attributes

The drict subtyping as described above brings a specia issue with it which result from the
fact that subtype entities inherit the attributes of their supertype entities. Often this inheritance
is an advantage, but often it is dso a disadvantage, especidly when the choice of attributes
that the supertype has differs from the choice of attributes that are wanted for the subtype.
Furthermore, one module may define something as an attribute of an entity where another
proposed module may define a separate entity (with its own attributes) for the same
concept.

A traditiona route for harmonisation in such Situationsisto try to harmonise the choice of
atributes. However, this may be possble for some existing models, but isimpossible with
respect to future still unknown requirements.

A way out to this problem is to harmonise in the following four steps.

1. To harmonise only on (attribute-less) concepts. This means that concepts are structured
in aspecidisation hierarchy. They don't inherit attributes. So, no issues will arise because
of unwanted inheritance. But ingtead of inheritance of attributes the concepts inherit the
capabilities (optiond!) that the associations that are defined for the supertype concept
are ingtantiated.

2. To harmonise the atributes by treating them as separate concepts and arranging them in
agpecidisation hierarchy aswell.

3. To harmonise the relationships between the entities and the attributes by treating them as
separate concepts and to harmonise them aso in a specidisation hierarchy.

4. To define templates that group concepts into attributed entities.

Thisisillugrated in the Intdligent Schematics module part about annotation_text.
Assume we started with an attributed entity, let me cdl it annotation _text_template. This

entity has three attributes:

- textud_encoded _informetion,

- text_appearance and

- text_box.

The steps above then result in the following:

1.

The concept of the entity is called annotation_text and is defined as a subtype of
annotation_element.

The three attributes are harmonised by defining them as subtypes of
encoded_information, property and box_2d, whereas a st (library) of valid text
gppearances is defined and where it is discovered that text_box isin fact arole of a
box_2d. The latter means that the attribute text_box could better be renamed as
box_2d.

The three relationships are harmonised by defining them subtypes of other possession
concepts as indicated in the diagram.

The diagram of figure 3 is congtructed that defines the attributed entity as a group of
harmonised concepts.

Annotation text

UoF 64
see 63 730049 see 35 1763 see35 911620
annotation_ POSSESSIOn._ encoded_
of_encoded_ .)
element -) information
information
;I_/ ;I_/
| | 1
610425 (RT) 5) (RT) see35 O as|a10024 we7 1707
- (1
) BOSSSSOr | of fextual | possessed textual_ possession_
N’ of textual encoded textual _ ~encoded_ of_aspect
; . = ; information — =
encoding information encoding by_individual
Specialization of
Possession of encoded information module
possession_of_|
property
N J
(RT) C) _1993 (RT) 1637 see 20 551004
annotation_ D possessor possession_ possessed O text r)__
text of_text_ of_text_ text_ appeargn e N property
appearance | @Ppearance | gppearance \ y,
include valid e 1600
text appearances (\
in library curve in_space
S (5 J
1994 1997 see 68 1578
(RT) (RT) > I
0SSESSor possession possessed N
E—Ow of_text_bo?(text_box O text_box \)‘ box_2d
I— —
(f Superfluous see
)
possession_of_|
spatial_aspect
—

Figure 3, Annotation text - attributed entity

N.B. The conceptual modelling style (as developed in EPISTLE) can be of assistance here, because it
defines entities that represent concepts (without attributes), whereas the idea of an attributeis
replaced by a combination of an association entity and another entity that represents the
attribute. In that style no attributes are inherited, but instead the entities inherit the (optional!)
capability that the associations that are defined for the supertype concept are instantiated.

The separate associations provide the possibility that such associations can be instantiated
more than once and can have additional information such as duration of validity. The multiple
instantiation is limited by cardinality constraints.

An attributed entity in the traditional modelling style can be transformed in atemplate of
conceptsin a conceptual modelling style.

Once a concept entity is defined as a subtype of ahigher level concept it should be verified
what ‘ capabilities’ the subtype does inherit from its supertype. In the example of the
Intelligent Schematics module the annotation _element is defined to be a sub-subtype of
physica_object, which means that an annotation eement inherits the capabilities that a
physica object have. For example, assume that the capability to form compostions of
physica objectsis defined in a supertype module that includes an entity called
composition_of physica_object which relates two physica objects with the roles part and
whole,

Now the module developer has two options:
1. Heincludes a subtype of composition _of physical_object in the module.
2. Hedoes not include that subtype in the module.

For an AP deve oper the difference will be that in the firgt option inclusion of the intelligent
schematics module in the AP implies that compaosition of annotation dements isincluded
automatically. In the second case the decision whether to include the “composition of
physical object” capability isleft to an AP developer, because an AP developer can choose
whether he wants to include the supertype module in his AP or not.

From this example it can be concluded that if a capability is an important aspects of a
module, then it is recommended to include a subtype of the more generic capability concept
in the module,

4. Interface entities

The concept of areusable module includes that an gpplication protocol (AP) that needs the
functiondity that is aready defined in an existing module does not need to define that
requirement again, but it could reuse the module and "integrate” it in the AP.

Smilarly harmonisation and integration of modules includes that a module that needs the
functiondity thet is dready defined in an existing module should be interfaced. Integration of
anew module with an existing module should be done by the definition of one or more
interface entities that rdate entities in the new module to entities of the existing module.
Such an interface entity can be present dready within the exigting the module, where it
defines ardaionship with an external entity (an entity that is externd to the module). It is
aso possible that the new module defines a completely new interface entity between one of
its own entities and an entity in the existing module.

When a new module consdersto reuse an interface entity that exists dready in the existing
module then there are three options:

1. Thenew module contains an entity thet isidentica to the externd entity of the exigting
module.

2. The new module contains an entity that is a subtype of the externd entity and therefore
the new module aso has to define a subtype of the interface entity that existsin the
module.

3. The new module contains an entity that is a supertype of the externa entity and thusthe
new module intends to generdise the use of the existing module and should define the
interface entity of the existing module as a subtype of the generdised interface entity in
the new module.

If the generdisation of the interface entity appears to be generaly vdid, then it should be
consdered to include the generdisation in the existing module.

The same process gppliesif an AP wants to use an existing module. Then the new AP
should be interfaced to the module as described above.

For example, assume that a new proposed module (or an AP) wantsto reuse the Intdlligent
Schematics module(s) to schematically symbolise building congtructions. Therefore the entity
"building_component™ was included in the module as the object to be symbolised. The
module can then be integrated with the intelligent schematics module by the definition of an
interface entity that relates the building_component to the entity annotation_element from the
Intelligent Schematics module (see figure 2).

However, the intdligent schematics module dready includes the concept of symbolisation of
object by annotation dement. Therefore the interface entity in the new module gppears to be
a subtype of the entity in the module caled

symbolisation_of object by annotation_element.

Furthermore, the entity building_component gppears to be a subtype of the entity
goplication_object that was used as an externd entity by the module.

Now, the module (or AP) developer has two options:

1. Hecaninclude the supertype entity gpplication_object dso in his new module and thus
generdises the objects that can be symbolised (which might be useful anyway in order to
symbolise aso properties such ase.g. adope).

2. Heddfines hisentity to be asubtype of the externd entity (which then remains dso
externd to his new module) and define his own interface entity and make it an explicit
subtype of the interface entity of the module.

Thisillugtrated the following generd requirement for modules:

Modules should preferably include interface entities that define relationships with
external entities (external to the module) and modules should refer to those external
entities explicitly and indicate where they are defined.

Thisisillugrated in the intelligent schematic module by the interface entity cdled

display of annotation_element_on_information_carrier. This entity relates an annotation
element to the externd entity physica_object.

A module (or AP) developer who includes the intelligent schematics module should

therefore either include the entity physica_object in hismodule (or AP), or he should include
asubtype of it. For example he could include "paper” when he wants to condrain the
information carriers to paper only. In the latter case he should dso define a subtype of the
display entity in hismodule (or AP).

S0, module harmonisation isakind of integration (or interfacing) between modulesthet is
gmilar to integration of amodulein an AP.

PS| forgot to mention in my note that proposed instances for "class of annotation_eement”
can be found as a specidisation hierarchy under the concept ‘annotation eement’ in the
gpreadsheet anno02.x1s on www.steplib.com.

