
Methodology for Harmonisation of Modules

by

Andries van Renssen
andries.s.h.vanrenssen@opc.shell.com

Version 0.1

27 January 2001

(For review at ISO meeting In Funchal)

Reference: WG10 N331

Table of Content

1. Introduction................................................................................................................. 2

2. Specialisation of modules (subtyping)............................................................................ 2

3. Inheritance and attributes.............................................................................................. 4

4. Interface entities ........................................................................................................... 6



1. Introduction
This document discusses a proposal for a methodology for STEP Modules Harmonisation.
The proposal uses a draft Intelligent Schematics module(s) as an example.

2. Specialisation of modules (subtyping)
A complete harmonised set of modules should ideally consist of one integrated
specialisation/generalisation hierarchy of concepts. This implies that every entity in a
module should be an explicit subtype of another entity in that module, or an explicit
subtype of an external entity (an entity external to the module).

Harmonisation between modules therefore includes that concepts used in one module should
be subtypes of concepts used in another module.
From this it becomes clear that a set of top level modules with top level entities (concepts) is
required. The modules dependency diagram of figure 1 illustrates this requirement.

physical
object

schematic
diagram

classification
of physical object

Annotation
element

Concept of
physical
object

P&ID
symbol
library

symbol
library

Architectural
symbol
library

Control
diagram
symbol
library

P&ID Intelligent
schematic
diagram

Possession
of

property

property
Concept of

property

classification of
property

classification

Concept of
annotation

element
properties

symbolisation

Intelligent 
schematic
diagram

17 Jan 2001

Figure 1, Dependency between modules

Figure 1 shows that an intelligent schematics module depends on the existence of
schematics, which depends on various other concepts, such as classification. So, a module
might reveal the need to define missing higher level modules in order to complete the
hierarchy.

This is illustrated by the draft part of an Intelligent Schematics module (see figure 2).



annotation_
element

inanimate_
physical_

object

symbolisation_
of_object_by_
annotation_

element

representation_
of_object

classification_
of_annotation_

element

class_of_
annotation_

element

classification_
of_physical_

object

class_of_
physical_

object

(RT)
classified_
annotation_

element

(RT)
classifier_of_
annotation_

element

classified_
physical_

object

classifier_of_
physical_

object

display_
of_annotation_
element_on_
information_

carrier

carried_
annotation

information_
carrier

association

physical_
object

annotation_
point

annotation_
curve

annotation_
area

annotation_
text

page_
connector

connector_
feature_of_
annotation_

element

symboliser

represented

physical_
object

see 65 see 65 see 66

see 64 see 67 see 70

see 50

see 7

see 51see 50see 50see 62

UoF 63

possession_of
point_in_space_
by_annotation

element

(RT)
possessor_
of_point_

of_a.e.

point_in_space_
of_annotation_

element

(RT)
possessed_

point_
of_a.e.

point_in_space

displacement_
of_point_of_
annotation_

element

displacement_
of_

point_in_space

possession_of_
point_in_space

1772see23

see22

possession_of_
spatial_aspect

possession_of_
aspect

730044

1334

730026

1999

1725

12171286

730044

displaced

7310052071

730049

610524 610521 610520

610425 610307 610554

1469 1430

1427

anything
Annotation element

730000

see 50

see 1

specialization of Classification module

specialization of
Representation

module

specialization of Placement module

63 63

63

63

63

6363

(RT) symbolised

2072

2073

63

Figure 2, Annotation element harmonised module

In figure 2, the module that needs to be harmonised is put in the context of its environment.
The module itself consists of the part within the light green box. The entities outside that box
are ‘external entities’ for the module. For example, individual annotation elements (the 'ink
on paper') can be classified according to the type of things they symbolise. Examples of
classes of symbols are: line, box, (shaded) area,  text (annotation text), pump symbol, etc.
This classification is defined by the entity classification_of_annotation_element, which
appears to be a subtype of the entity classification_of_physical_object (which ideally should
exist already in another module).



Similarly, the entity class_of_annotation_element is a subtype of class_of_physical_object.
This subtype defines a subset of classes of physical objects that may validly by used to
classify annotation elements. To define such a subset it usually is sufficient to define only the
top of a sub-hierarchy, but sometimes the classes are constrained to a "picklist" of classes.
In the latter case the picklist should be defined as an explicit constraint on the instances of
the supertype class.

So, harmonisation of the module shows the requirement that other modules should
exist for the higher level concepts from which the concepts in the module are
subtypes.

This suggests that it seems appropriate to start from atomic modules that contain one
concept only and build molecular modules from that.

An example of an existing hierarchy of concepts is called STEPlib. It contains a
specialisation hierarchy with many concepts, including most concepts from which the
Intelligent Schematics module concepts are subtypes. It is not just a traditional class library,
but it includes also higher level concept entities in the hierarchy. As such is can be viewed as
a data model concept hierarchy. It is proposed as a starter set of a concept hierarchy for
modules. It is available on /www.steplib.com/.

3. Inheritance and attributes
The strict subtyping as described above brings a special issue with it which result from the
fact that subtype entities inherit the attributes of their supertype entities. Often this inheritance
is an advantage, but often it is also a disadvantage, especially when the choice of attributes
that the supertype has differs from the choice of attributes that are wanted for the subtype.
Furthermore, one module may define something as an attribute of an entity where another
proposed module may define a separate entity (with its own attributes) for the same
concept.

A traditional route for harmonisation in such situations is to try to harmonise the choice of
attributes. However, this may be possible for some existing models, but is impossible with
respect to future still unknown requirements.

A way out to this problem is to harmonise in the following four steps:

1. To harmonise only on (attribute-less) concepts. This means that concepts are structured
in a specialisation hierarchy. They don't inherit attributes. So, no issues will arise because
of unwanted inheritance. But instead of inheritance of attributes the concepts inherit the
capabilities (options!) that the associations that are defined for the supertype concept
are instantiated.

2. To harmonise the attributes by treating them as separate concepts and arranging them in
a specialisation hierarchy as well.

3. To harmonise the relationships between the entities and the attributes by treating them as
separate concepts and to harmonise them also in a specialisation hierarchy.

4. To define templates that group concepts into attributed entities.

This is illustrated in the Intelligent Schematics module part about annotation_text.
Assume we started with an attributed entity, let me call it annotation_text_template. This



entity has three attributes:
- textual_encoded_information,
- text_appearance and
- text_box.
The steps above then result in the following:

1. The concept of the entity is called annotation_text and is defined as a subtype of
annotation_element.

2. The three attributes are harmonised by defining them as subtypes of
encoded_information, property and box_2d, whereas a set (library) of valid text
appearances is defined and where it is discovered that text_box is in fact a role of a
box_2d. The latter means that the attribute text_box could better be renamed as
box_2d.

3. The three relationships are harmonised by defining them subtypes of other possession
concepts as indicated in the diagram.

4. The diagram of figure 3 is constructed that defines the attributed entity as a group of
harmonised concepts.

annotation_
text

annotation_
element

possession_
of_textual_
encoded_

information

textual_
encoded_

information

possession_
of_encoded_
information

encoded_
information

(RT)
possessor_
of_textual_
encoding

(RT)
possessed_

textual_
encoding

see 35see 35

UoF 64
see 63 9116201763

910024

possession_
of_text_

appearance

text_
appearance

property

(RT)
possessor_
of_text_

appearance

(RT)
possessed_

text_
appearance

see 35
see 7 1727

1637

possession_
of_text_box

text_box

possession_
of_aspect_

by_individual

box_2d

(RT)
possessor_

of_text_box

(RT)
possessed_
text_box

see 68 15781997

see 20

curve_in_space

see 22 1600

see

possession_of_
spatial_aspect

possession_of_
property

1994

1993 551004

610425

730049

Annotation text

Specialization of
Possession of encoded information module

include valid
text appearances

in library

Superfluous

Figure 3, Annotation text - attributed entity



N.B. The conceptual modelling style (as developed in EPISTLE) can be of assistance here, because it
defines entities that represent concepts (without attributes), whereas the idea of an attribute is
replaced by a combination of an association entity and another entity that represents the
attribute. In that style no attributes are inherited, but instead the entities inherit the (optional!)
capability that the associations that are defined for the supertype concept are instantiated.

The separate associations provide the possibility that such associations can be instantiated
more than once and can have additional information such as duration of validity. The multiple
instantiation is limited by cardinality constraints.

An attributed entity in the traditional modelling style can be transformed in a template of
concepts in a conceptual modelling style.

Once a concept entity is defined as a subtype of a higher level concept it should be verified
what ‘capabilities’ the subtype does inherit from its supertype. In the example of the
Intelligent Schematics module the annotation_element is defined to be a sub-subtype of
physical_object, which means that an annotation element inherits the capabilities that a
physical object have. For example, assume that the capability to form compositions of
physical objects is defined in a supertype module that includes an entity called
composition_of_physical_object which relates two physical objects with the roles part and
whole.

Now the module developer has two options:

1.  He includes a subtype of composition_of_physical_object in the module.

2.  He does not include that subtype in the module.

For an AP developer the difference will be that in the first option inclusion of the intelligent
schematics module in the AP implies that composition of annotation elements is included
automatically. In the second case the decision whether to include the “composition of
physical object” capability is left to an AP developer, because an AP developer can choose
whether he wants to include the supertype module in his AP or not.

From this example it can be concluded that if a capability is an important aspects of a
module, then it is recommended to include a subtype of the more generic capability concept
in the module.

4. Interface entities
The concept of a reusable module includes that an application protocol (AP) that needs the
functionality that is already defined in an existing module does not need to define that
requirement again, but it could reuse the module and "integrate" it in the AP.

Similarly harmonisation and integration of modules includes that a module that needs the
functionality that is already defined in an existing module should be interfaced. Integration of
a new module with an existing module should be done by the definition of one or more
interface entities that relate entities in the new module to entities of the existing module.
Such an interface entity can be present already within the existing the module, where it
defines a relationship with an external entity (an entity that is external to the module). It is
also possible that the new module defines a completely new interface entity between one of
its own entities and an entity in the existing module.



When a new module considers to reuse an interface entity that exists already in the existing
module then there are three options:

1. The new module contains an entity that is identical to the external entity of the existing
module.

2. The new module contains an entity that is a subtype of the external entity and therefore
the new module also has to define a subtype of the interface entity that exists in the
module.

3. The new module contains an entity that is a supertype of the external entity and thus the
new module intends to generalise the use of the existing module and should define the
interface entity of the existing module as a subtype of the generalised interface entity in
the new module.
If the generalisation of the interface entity appears to be generally valid, then it should be
considered to include the generalisation in the existing module.

The same process applies if an AP wants to use an existing module. Then the new AP
should be interfaced to the module as described above.
For example, assume that a new proposed module (or an AP) wants to reuse the Intelligent
Schematics module(s) to schematically symbolise building constructions. Therefore the entity
"building_component" was included in the module as the object to be symbolised. The
module can then be integrated with the intelligent schematics module by the definition of an
interface entity that relates the building_component to the entity annotation_element from the
Intelligent Schematics module (see figure 2).

However, the intelligent schematics module already includes the concept of symbolisation of
object by annotation element. Therefore the interface entity in the new module appears to be
a subtype of the entity in the module called
symbolisation_of_object_by_annotation_element.

Furthermore, the entity building_component appears to be a subtype of the entity
application_object that was used as an external entity by the module.

Now, the module (or AP) developer has two options:

1. He can include the supertype entity application_object also in his new module and thus
generalises the objects that can be symbolised (which might be useful anyway in order to
symbolise also properties such as e.g. a slope).

2. He defines his entity to be a subtype of the external entity (which then remains also
external to his new module) and define his own interface entity and make it an explicit
subtype of the interface entity of the module.

This illustrated the following general requirement for modules:
Modules should preferably include interface entities that define relationships with
external entities (external to the module) and modules should refer to those external
entities explicitly and indicate where they are defined.

This is illustrated in the intelligent schematic module by the interface entity called
display_of_annotation_element_on_information_carrier. This entity relates an annotation
element to the external entity physical_object.
A module (or AP) developer who includes the intelligent schematics module should



therefore either include the entity physical_object in his module (or AP), or he should include
a subtype of it. For example he could include "paper" when he wants to constrain the
information carriers to paper only. In the latter case he should also define a subtype of the
display entity in his module (or AP).

So, module harmonisation is a kind of integration (or interfacing) between modules that is
similar to integration of a module in an AP.

PS I forgot to mention in my note that proposed instances for "class_of_annotation_element"
can be found as a specialisation hierarchy under the concept 'annotation element' in the
spreadsheet anno02.xls on www.steplib.com.


