AP238 Extension for Composite Layup

1 Application Objects

Composite Operations

1.1 AM_layup_operation

The AM_layup_operation application object defines the machine functions and technology to be used in a layup oeration. The Am_layup_operation application object inherits from the am_operation as defined in ISO 14649-17 [1],

1.1.1 machine_functions

the machine functions required for this operation.

1.1.2 its_technology

the processing technology to be used for this operation.

1.2 Cut_tape_function

The cut tape application object is an AM machine function that cuts a tape during a layup.

ENTITY cut_tape_function
SUBTYPE OF (am_machine_functions);
 lane_number: INTEGER;
END_ENTITY;

NOTE: For example, in the middle of a course the first or last tape may need to be cut avoid overlaps.

Cut tapes in courses

1.2.1 lane_number

The lane number of the tow that is to be cut.

NOTE: The lane number is an index into the maximum_number_of_lanes as defined in the threed_layup_operation.

1.3 start_tape_function

The start tape application object is an AM machine function that starts tape laying in a lane.

```
ENTITY start_tape_function
```

```
SUBTYPE OF (am_machine_functions);
    lane_number: INTEGER;
END_ENTITY;
```

1.3.1 lane_number

The lane number of the tow that is to be started or restarted.

NOTE: The lane number is an index into the maximum_number_of_lanes as defined in the threed_layup_operation.

1.4 start_all_tape_function

The start all tape application object is an AM machine function that starts tape laying in all the lanes of the course

```
ENTITY start_all_tape_function
SUBTYPE OF (am_machine_functions);
END_ENTITY;
```

NOTE: The number of lanes in a course is set in the oned_layup_operation and may not be the same as the maiximum number of tapes allowed in the tow.

1.5 Compaction_roller_cooling_on_function

The compaction_roller_cooling_on application object is an AM machine function that turns cooling on for the compaction roller.

```
ENTITY compaction_roller_cooling_on_function
SUBTYPE OF (am_machine_functions);
END_ENTITY;
```

1.6 Compaction_roller_cooling_off_function

The compaction_roller_cooling_on application object is an AM machine function that turns cooling off for the compaction roller.

```
ENTITY compaction_roller_cooling_off_function
SUBTYPE OF (am_machine_functions);
END_ENTITY;
```

1.7 Compaction_force_function

The compaction_force application object is an AM machine function that defines a force for the compaction roller.

```
ENTITY compaction_force_function
SUBTYPE OF (am_machine_functions);
force: force_data_element;
END_ENTITY;
```

1.7.1 force

the force to be applied for compaction

1.8 High_heat_function

The high heat application object is an AM machine function that sets the tape heater to high.

```
ENTITY high_heat_function
SUBTYPE OF (am_machine_functions);
   temperature: OPTIONAL thermodynamic_temperature_data_element;
END_ENTITY;
```

1.8.1 temperature

the desired temperature for the heater.

1.9 Low_heat_function

The low heat application object is an AM machine function that sets the tape heater to low.

```
ENTITY low_heat_function
SUBTYPE OF (am_machine_functions);
   temperature: OPTIONAL thermodynamic_temperature_data_element;
END_ENTITY;
```

1.9.1 temperature

the desired temperature for the heater.

1.10 No_heat_function

The no_heat application object is an AM machine function that turns the heater off.

ENTITY no_heat_function
SUBTYPE OF (am_machine_functions);
END_ENTITY;

1.11 Tow_tension_function

The tow_tension application object is an AM machine function that sets the tension of the tape.

```
ENTITY tow_tension_function
SUBTYPE OF (am_machine_functions);
    new_tension: force_data_element;
END_ENTITY;
```

1.11.1 New_tension

the new tow tension.

1.12 High_tow_tension_function

The tow_tension application object is an AM machine function sets the tension of the tape to high with an optional value.

```
ENTITY high_tow_tension_function
SUBTYPE OF (am_machine_functions);
    new_tension: OPTIONAL force_data_element;
END_ENTITY;
```

1.12.1 New_tension

the new tow tension.

1.13 Low_tow_tension_function

The low_tow_tension application object is an AM machine function that sets the tension of the tape to low with an optional value.

```
ENTITY low_tow_tension_function
SUBTYPE OF (am_machine_functions);
    new_tension: OPTIONAL force_data_element;
END_ENTITY;
```

1.13.1 New_tension

the new tow tension.

Technology

1.14 Am_layup_technology

The am_layup technology defines the speed of the layup and the width of the course.

```
ENTITY am_layup_technology
SUBTYPE OF (am_technology);
    head_feedrate: velocity_data_element;
    tape_feedrate: OPTIONAL velocity_data_element;
    active_lanes: SET [0:?] OF INTEGER;
    tape_width: length_measure;
    course_direction: OPTIONAL forward_or_backward;
END_ENTITY;
TYPE forward or backward = ENUMERATION OF (forward, backward); END TYPE;
```

1.14.1 head_feedrate

the speed of the head as it moves on the course.

1.14.2 tape_feedrate

the speed of the tape as it is fed through the head.

NOTE: The tape feedrate needs to be higher than the head federate when the distance between the head and the surface is growing.

1.14.3 active_lanes

the lane numbers of the active tows.

1.14.4 tape_width

the width of tape being laid in this course.

1.14.5 course_direction

the direction of the course classified as forward when in the direction of rosette, and backward when in direction opposite to the rosette.

NOTE: In most situations consecutive courses are laid in opposite directions.

1.15 AM_oned_layup_operation

The AM_oned_layup_operation application object defines a tow path for the tape.

```
ENTITY am_oned_layup_operation
SUBTYPE OF (am_layup_operation);
approach: OPTIONAL approach_retract_strategy;
retract: OPTIONAL approach_retract_strategy;
its_twod_operation: am_twod_layup_operation;
DERIVE
course_path: toolpath_list :=
    SELF\Operation.its_toolpath;
END_ENTITY;
```

1.15.1 approach

the strategy used to approach the course before tape laying begins.

1.15.2 retract

the strategy used to exit the course after tape laying ends.

1.15.3 its_twod_operation

the twod_layup_operation used to generate this oned_layup_operation.

1.15.4 course_path

the centerline of the path followed by the tape head.

NOTE: the course path is inherited from operation and shown here for clarity

1.16 Am_twod_layup_operation

The AM_twod_layup_operation application object defines information for generating AM_oned_layup operations.


```
// operation is defined for the ply_piece in a workingstep
ENTITY am_twod_layup_operation
SUBTYPE OF (am layup operation);
   manufacturing_ply_base:
                                 OPTIONAL open shell;
   manufacturing outer boundary: OPTIONAL composite curve;
   manufacturing_inner_boundaries: OPTIONAL LIST [1:?] OF composite_curve;
   manufacturing_rosette:
                                 OPTIONAL Direction_select;
   ply_thickness:
                                 OPTIONAL Length_data_element;
   ply edge tolerance:
                                 OPTIONAL Tolerance range;
   ply edge allowance:
                                 Length data element;
   start_point:
                                 OPTIONAL cartesian point;
                                 am threed_layup_operation;
   its threed operation:
END ENTITY;
```

1.16.1 Manufacturing_ply_base

the surface to be laid laid during manufacturing.

NOTE: if not given the surface is the base surface defined by the composite ply table referenced by the threed_operation. The manufacturing ply base enables modeling of changes to the base surface as layers are built up.

1.16.2 manufacturing_outer_boundary

the manufacturing boundary on the surface to lay the tape. No tape shall be laid beyond this boundary.

NOTE: if not given the boundary is the same as the edge of the ply surface

1.16.3 manufacturing_inner_boundaries

the manufacturing boundaries of any voids in the surface. No tape shall be laid within this boundary.

NOTE: if not given excess tape may be laid anywhere within the void.

1.16.4 Manufacturing rosette

manufacturing specific advice for the direction of the course. The x direction defines the direction of the course, the y direction defines the direction to find the start point for the next course.

NOTE: if not given the rosette is as defined by the composite ply table.

1.16.5 ply_edge_tolerance

the range allowed for the distance between the start of the tape and the edge.

1.16.6 ply_edge_allowance

course distance before the tape starts and after the tape ends.

1.16.7 ply_thickness

the thickness of the layer.

NOTE: if not given the thickness is defined by the material of the ply.

1.16.8 start_point

the point on the surface to start laying the first course.

1.16.9 its_threed_operation

the threed_layup operation for this twod_layup operation.

1.17 AM_threed_layup_operation

The AM_threed_layup_operation application object describes process parameters for generating AM_twod_layup_operation application objects.

```
ENTITY am_threed_layup_operation
SUBTYPE OF (am_layup_operation);
    ply_table: Composite_assembly_table;
    full_course_width: length_data_element;
    maximum_number_of_lanes: INTEGER;
    layer_thickness: OPTIONAL length_data_element;
    its_layup_strategy: OPTIONAL am_layup_strategy;
END ENTITY;
```

1.17.1 ply table

the composite ply table defining the plys to be laid.

1.17.2 full_course_width

the width of the course if all the lanes are active.

1.17.3 maximum_number_of_lanes

the maximum number of lanes allowed in the tow.

NOTE: The number of active lanes is varied between courses to manage stagger. The maximum defines how lanes are addressed when tapes are cut and restarted.

1.17.4 its_layup_strategy

strategy information for planning am_twod_layup_operations.

1.18 AM_layup_strategy

The AM_layup_strategy application object defines a strategy for generating layup paths on ean layer.

```
Entity am_layup_strategy
ABSTRACT SUPERTYPE OF (ONEOF (am_layup_stagger_strategy));
END_ENTITY;
```


Stagger Strategy for a sequence of layers

1.19 AM_stagger_strategy

The AM_layup_stagger_strategy application object defines how many layers are required before a start point can repeat.

```
Entity am_layup_stagger_strategy
SUBTYPE OF (am_layup_strategy);
    overlap_width: length_data_element;
```

overlap_direction:	direction;
<pre>stagger_distance:</pre>	<pre>length_data_element;</pre>
<pre>stagger_repeat:</pre>	count_measure;
<pre>stagger_tolerance:</pre>	<pre>tolerance_range;</pre>
END_ENTITY;	

1.19.1 overlap_width

the width of the overlap between courses.

1.19.2 overlap_direction

the direction of the overlap.

1.19.3 stagger_distance

the distance between overlaps on consecutive layers.

1.19.4 stagger_repeat

the number of layers before a stagger repeats.

1.19.5 stagger_tolerance

the range allowed for the distance between the last tape of one couse and the first tape of the next course.