Action items for December 15th and 22nd

- Think about schedule choices
 - March 1^{st} for ISO 23247 FDIS
 - May 1st for ISO virtual meeting
 - November 1st for ISO Hamamatsu (Japan) meeting
- Business goals of your project
- Benefits of your project for standards community
- Resource requirements

Round 2 Use Cases under discussion

- Extended Use Case 1 robot teams for drill and fill
- Extended Use Case 2 stack-up measurement for fasteners
- Extended Use Case 3 machining feature quality
- New Use Case 4 digital twin for additive manufacturing
- New Use Case 5 design for manufacturing analysis*
- New Use Case 6 predictive performance*

UC1 – Drill and Fill using Robot teams

- Dynamic Scheduling for Condition of Assembly (Round 1)
- Dynamic Scheduling for Condition of Equipment (Round 2)
- Round 2 goals
 - "Kill Kenny" in the robot cell at UW lab
 - Add the assembly loader into the cell (PLC integration)
 - Learn how to manage the digital twins
 - Parallel programming and robot cooperation / interference checking
 - Standardized state machines, different types of robots, loaders, etc

UC2 – Fastener Weight Reduction new focus – more tolerance types

- Round 1 Weight reduction
 - Measure stack-up of Al, Ti and Cf layers
 - Reduce weight by selecting best/exact fit fasteners
- Round 2 Goals
 - Demonstrate for more types of tolerances
 - Adjust geometry to match each type of tolerance
 - Learn about how to apply Round 1 results to more types of features an d tolerances

UC3 Machining Feature Quality

- Machining feature quality
 - Machine monitoring
 - Exception detection
 - Feature identification
- Round 2
 - Feature measurement
 - Life cycle management
 - Learn how to manage the digital twins
 - One plan many runs (as per AP238 Edition 2)
 - All runs of a part, all runs for a cutter

Additive Manufacturing Interoperability

- Make STEP-NC Process Model
 - Technology model for additive processes
 - Validate using NIST digital twin
 - Learn how to match images against geometry

Qualify as build – defect prediction model

- Porosity is an important measurement for scan strategies.
- Correlate the process monitoring digital twin and XCT detected defects.
- Train machine learning model to predict pores from the digital twin.

Predictive Machining

- MTConnect simulation
 - Multi-core programming
 - Exception detection
 - Feature identification
- QIF Results
 - From simulation points, touch probe, CMM
 - Geometry re-generation
 - Volume re-computation
 - Closed loop prediction

