Roadmap to Hyper-connected Manufacturing

STEP Tools, Inc. http://www.steptools.com

Martin Hardwick Professor of Computer Science, RPI President STEP Tools, Inc.

Introduction

Hyper-connected manufacturing is STEP + Digital Manufacturing + Smart Manufacturing

- Today manufacturing machines are controlled using codes
 - Detailed instructions unique to each machine
- This roadmap describes a path to intelligently connecting millions of machines
 - Models described by the STEP standard
 - Customized for processes by the STEP-NC standard
 - Linked using protocols as described in this map

AG1 Digital Manufacturing

ISO TC 184/SC4

Integrating Machining and Measurement

AP242 Part with GD&T

On-machine mesh generation

Real time virtual metrology

Actual metrology

Observations

- Hyper-connecting manufacturing will depend on integrating inspection and machining to close the loop between fabrication and assembly
- Acting on results will require determining the set of parameters that matter most and then compensating for them appropriately
- A Hyper-connection framework should support apps for measuring and manipulating situation specific parameters
- With lots of data sharing for assembly mating, GD&T measurements, setup definition, tooling dimensions, fixture and datum placement, motion results etc.

Phases 1 and 2 (in progress)

Phase 3 (in planning) Optimized Machining

• Goals

- CAM to CAM data exchange
- Read/Write SWIM
- Machining web services
 - Tooling assembly
 - Workpiece fixture and placement
 - Machine tool kinematic definition

- Means
 - CAM data exchange
 - Boeing => CATIA
 - $PSU \Rightarrow MCX$
 - Read / Write SWIM
 - STEP Tools => **S W**
 - Vanderbilt =>
 - Manufacturing apps
 - Vendors (Sandvik, Iscar, Okuma, DMG, Makino, ..)

M 3

Path finding for Phase 4 Closed Loop Machining

- Research
 - Accuracy issues
 - Setup validation
 - MTConnect sampling rate
 - Tool bending
 - Measurement issues
 - Tolerance definition
 - Problem detection
 - Problem correction

- Standards development
 - Recommended Practices
 - Machine tool kinematics
 - 3D cutter assembly
 - 3D fixture assembly
 - AP238 Edition 2
 - Edition 1 modularization
 - Corrections from testing
 - APQP quality assurance
 - 4D geometry
 - Model optimization

SWIM documentation

- **S** STEP Backbone (Information Models)
 - EXPRESS definitions of STEP and STEP-NC
 - <u>http://www.steptools.com/support/stdev_docs/stpman/html/index.html</u>
- Web Gateway (Protocols, Hyperlinks, UUIDs)
 - Example of gateway functionality
 - <u>http://www.steptools.com/support/stepnc_docs/stepncdll/</u>
- Interpretation Environment (appropriate schema definitions)
 - Distributed manufacturing objects in JSON, XML etc
 - <u>http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm</u>
 <u>?csnumber=63141</u>
- Manufacturing App (open source)
 - Example App machining process viewer
 - <u>https://github.com/ghemingway/cad.js/tree/master</u>

Concluding remarks

- The SW is like a router for hyper-connected manufacturing
 - New-build systems like STEP-NC Machine
 - Re-purposed systems like CAD/CAM's
 - Requirement is to implement the protocols starting with P21 e3
- First three gates
 - Summer 2016: First TIM system is operational
 - Fall 2016: Protocols for Read/Write SWIM published
 - Spring 2017: Funding for Phase 3 development and Phase 4 research
- Understood benefits
 - 15% better machining by enabling 3rd party optimization
 - Reduced scrappage due to real-time measurement
 - Deployment of less expensive, less rigid machines like robots
 - Faster to market because of direct machine to machine connection