Implementing AP238 CC1 – Writing

David Odendahl

11/16/2004

david.j.odendahl@boeing.com
DRAFT

Purpose

This document is not intended to be a complete tutorial on how to develop a writer for AP238 CC1. Rather, it is a collection of examples, advice and warnings on how to create such a tool. I expect that the information contained here will greatly reduce the time required for a programmer to create similar software.

 This is free advice, so try not to get too mad at me if something in here isn’t correct or unclear. However, please let me know what you find incorrect or confusing, and I’ll try to get it fixed. Thanks!

Audience

This document assumes that the reader is an experienced programmer who understands the Object Oriented paradigm. It also assumes that the reader understands the basic concepts of CNC, including CL file formats, machine dependencies, and RS-274.

Background

In March, of 2004, I embarked on an effort to create a tool that would allow the conversion of a CATIA V5 CL file into an AP238 CC1 Part 21 file. I also created tools to convert from AP238 into three separate CNC formats: Siemens 840D, Fanuc 15/16/30, and ACL (RS-494). The purpose of this was to demonstrate the practicality of the AP238 data format, and provide data that would allow the machining of test parts using AP238. After several false starts, and about 300 hours of effort, I competed all four converters in August of 2004. The data produced using these converters have been used to manufacture test parts that demonstrate the benefits of AP238. This document conforms to the AP238 DIS version, which was finalized in October of 2004.

The Task at Hand

The creation of a writer for AP238 shouldn’t be TOO big of a job. The data presented in a CL file can be translated on a mostly one-to-one relationship with an AP238 data structure. CC1 is a very small subset of the AP238 standard. It’s easier to create an AP238 writer, since all possible permutations of AP238 CC1 need be used. A reader, however, has a tougher job, since it must support ALL of the AP238 CC1 representations.

Thanks

Thanks are due to Mauro Costa of Boeing, and Dave Loffredo, of Step Tools for reviewing this document

The Challenges

There are four main challenges to the creation of the software:

· The “Part Twenty-What? Problem” : How does one understand a what a Part 21 file is, and specifically, how does one extract the relevant information from the gazillion pages of ISO 10303/14649 documentation so that one can write or read such a file.

· The “Which Spec, Now?” : How does one locate and understand the definition of AP238, which is also contained in a gazillion pages of various STEP standards documents.

· The “What’s a Mapping Table, Anyhow” Problem : How does one understand the hundreds of pages of mapping tables in the AP238 specification?

· The “The Wild, Wild West” Problem : How does one adapt the present unstructured, “anything goes” format of NC data to the object-oriented, highly structure of AP238?

Part Twenty-What?

AP238 files are represented in a “Part 21” file format. The term “Part 21” refers to the fact that the file format is defined using ISO standard 10303-21. A part 21 file is a list of ASCII data, referred to as “entities”. These entities contain attributes, which can be a numerical id, data, comments, and pointers to other entities.

Get a Part 21 Browser

 An AP238 file is likely to contain thousands of entities. Because of the universal, non-redundant nature of STEP data, these pointers are likely to be pointing in an awkward direction...that is, it is the pointers are just as likely to be pointing up the data hierarchy as to be pointing down. This makes it hard to read or write this data. The ((arrows in the example programs show how the entities point to each other in a Part 21 file. A careful inspection of these example files should illustrate this difficulty.

With all these different entities pointing in all these different directions, it’s difficult to figure out what’s happening in an AP238 Part 21 file. I used a tool, called “STEP File Browser” from STEP Tools, Inc. to help me understand the files I generated and read. The browser allows you to quickly follow pointers, (including the ones pointing the “wrong” way) as well as quickly view the name, type and value of the attributes in each entity.

It’s pretty tough to develop software for a file that’s hard to read. Get an appropriate tool to allow you to see what you’ve done. You will save a lot of time.

Label Your Entities

Most (all?) entities contain an optional label attribute. Label each entity with relevant data that identifies the context of the entity. This will be extremely helpful when understanding and debugging a part 21 file. Make sure that you provide for a simple way to eliminate the optional entity labels once you’ve completed debugging, as these are likely to significantly improve file size.

Be careful, though… in many cases the contents of the labels (like the name on representation_items) is actually specified by the AP. In this case, a misplaced comment will cause your program to fail!

An Example Entity

#4727= MACHINING_TOOLPATH_SEQUENCE_RELATIONSHIP ('',$,#4973,#4229,0.);

 (((((((
 The sequence of the relationship

 The ID of the related method

 The ID of the related method

 An optional description of the entity

 The entity’s name

 The entity’s type

 The entity’s ID, which can be used as a reference by other entities

Which Spec, Now?

One of the most powerful aspects of the STEP suite of standards is the fact that the various APs and standards are harmonized with each other. AP238 is not so much a new standard, but the careful arrangement and use of data structures that have already been established in other STEP standards.

While this makes the standard extremely powerful, it makes it a bit rough to work with the standard, especially when one is new to it. It’s easy to lose track of where you are when you are following the links from standard to standard. Below is some basic information that describes the relevant document. One should have these documents at hand when developing software for STEP-NC. (Hope you have a big desk, or are able to view them electronically!… These are BIG documents!)

I’d start by first reading 14649-1.

ISO/DIS 10303 – 238:

The “AP238”document. Contains definitions, mapping tables, information requirements, conformance classes, and EXPRESS listings. You’ll spend most of the time in this document .

ISO 14649-1

An overview of the STEP-NC concept. Contains very good scenarios in the annexes which describe the benefits and possible implementation of STEP-NC

ISO 14649-10

Contains basic definitions and structures. Describes workingstep and toolpath.

ISO 14649-11

Contains definitions and structures specifically for milling applications.

ISO 14649-111

Contains definitions and structures for cutting tools

ISO 10303-11 Annex E

Contains a description of the EXPRESS-

G representation. This is useful when trying to understand the ARM

ISO 10303-42

Contains definitions and structures for basic geometric entities: polyline, etc.

What’s a Mapping Table, Anyhow?

A key component of the AP238 specification is mapping tables. Mapping tables define the relationship between various entities and how they must be structured in a Part 21 file. An explanation of the notation for the mapping tables is located at the front of the mapping tables in the AP238 document. In the examples, the relevant mapping tables are displayed below the entity Ids. An explanation of many of the entities is also contained in the examples. Have a look at them. The comments help with the understanding of how the mapping tables work (I hope). I found it easier to have a hard copy of the mapping table notation in front of me when I am wading through the tables.

The Wild, Wild West

For the most part, in a traditional NC data file, pretty much anything goes. Very few restrictions are placed on the order or structure of the data that is sent to the CNC. Each instruction is simply executed in the order in which it is received. I’ve seen lots of weird stuff in these files…. I’ve seen spindles turned on twice before it is turned off, feedrates selected, but never used, and tools selected, but never used. I used the following methodology to go from the Wild, Wild West of a traditional CL file to the highly structured environment of AP238. This methodology isn’t guaranteed to work efficiently in every situation, but has worked well for me.

1. Workingsteps are tied to tool changes

a. Create a new, temporary, empty, workingstep at the beginning of the file

b. Populate the workingstep with data (tool selection, tool paths, spindle commands, etc..) until a tool change is encountered.

c. Verify that all required data is present in the temporary workingstep

d. Output the temporary workingstep as a workingstep in the output file

e. Create a new, empty, temporary workingstep that contains the new, selected tool.

2. Toolpaths are tied to feedrate changes

a. Create a new, temporary, empty, toolpath at the beginning of the file. The empty toolpath should contain room for tool motion and orientation

b. Populate the toolpath with data (polyline coordinates) until a feedrate change is encountered

c. If no tool orientation change is commanded, disregard this information

d. Verify that all required data is present in the temporary toolpath

e. Save the new toolpath and link to the active workingstep

f. Create a new, empty, temporary toolpath that contains the new feedrate

Other notes

· Commonly used tool orientation vectors can be reused ex: (0.0, 0.0, 1.0)

· If there are a lot of feedrate changes, it may be smarter to represent the feedrate as a polyline within the toolpath, instead of a constant

ARM and AIM

The STEP documentation frequently refers to the ARM and AIM. Simply put, the ARM section presents a higher-level description of the AP238 data structure. It’s easiest to read in the EXPRESS-G format. The AIM presents a low-level description of how the ARM is implemented. The relationship between the ARM and AIM is described in the mapping tables.

The Examples

The remainder of this document contains examples of valid AP238 structures. Each example contains comments that are delimited using standard C/C++ notation (/* */). Comments are more sparse in the later examples. Additionally, the relevant parts of the ARM are presented, as well as the relevant mapping tables of the AIM.

WARNING!!!! The examples are incomplete. I am working on unifying them with the example CDS/Cone AP238 file. They should only be used as a reference. I am working to correct this.

WARNING!!! The examples 2, 3, and 7 do not define UNITs as per AP238. I am working on these examples.

Example 1: A Three – Axis Toolpath

/* A toolpath can be represented as a list of three axis coordinates, each of which contains the X, Y, and Z axis coordinates of the centerline of the cutter. Since this is the way that toolpaths are described in CL files, the translation to this format is straightforward

*/

#4230=MACHINING_TOOLPATH('WS 2 TP 1','cutter location trajectory','','');

(
#2504=ACTION_PROPERTY('basic curve','',#4230);

(
#516=ACTION_PROPERTY_REPRESENTATION('basic curve','',#2504,#1509);

(
#1509=REPRESENTATION($,(#3723),$);

(
#3723=POLYLINE('WS 2 TP 1',(#5246,#5247,#5248));

 (
 #5246=CARTESIAN_POINT($,(-6.,-6.,-3.19));

 (
 #5247=CARTESIAN_POINT($,(-6.,6.,-3.19));

(
#5248=CARTESIAN_POINT($,(6.,6.,-3.19));

/* ARM */

/*

toolpath

trajectory

cutter_location_trajectory

basiccurve

bounded_curve

*/

#4230

machining_toolpath <=

action_method

{ action_method.description ‘cutter location trajectory’ }

/* The machining toolpath is defined as a cutter location trajectory, which means that the toolpath that is defined represents the path of the centerline of the cutter.

*/

#2504

action_property.definition

{ action_property.name = ‘basic curve’ }

/* The path of the centerline of the cutter is a bounded_curve. The attribute ‘definition’ points to the machining_toolpath

*/

#516

action_property <-

action_property_representation.property

action_property_representation

action_property_representation.representation ->

representation

/* the action_property_representation links the action_property to its representation. The attribute ‘property’ points to the action_property. The attribute ‘representation’ points to the representation.

*/

#1509

representation.items[i]->

representation_item =>

geometric_representation_item

/* Allows a more general representation */

#3723

representation_item =>

geometric_representation_item =>

curve =>

bounded_curve

/* A polyline is a bounded curve, which is

a subtype of curve, which is

a subtype of a geometric_representation_item which is

a subtype of a representation_item.

10303-42 defines a polyline as a subtype of a bounded_curve

10303-42 defines a polyline as a list of cartesian_point

*/

#5246, #5247, #5248

/* 10303-42 defines a cartesian_point as list of points. In this context, the list is a length of three. Each of the three points in the list describe the X, Y, and Z axis positions, of the centerline of the cutter.

*/

Example 2: A Five – Axis Toolpath

/* A five-axis toolpath is similar to a three-axis toolpath. Like a three-axis toolpath, the cutter centerline path is also represented by a polyline. However, in a five-axis toolpath, a second polyline, of the same length as the cutter centerline path, describes the tool orientation as a unit vector. Again, this is a straightforward translation from a CL file

*/

 /* Tool Tip Position */

#4470=MACHINING_TOOLPATH('WS 3 TP 51','cutter location trajectory','','');

 (
 #3706=ACTION_PROPERTY('basic curve','',#4470);

 (
 #1484=ACTION_PROPERTY_REPRESENTATION('basic curve','',#3706,#2477);

 (
 #2477=REPRESENTATION($,(#3969),$);

 (
 #3969=POLYLINE('WS 3 TP 51',(#9305,#9307,#9309));

 (
 #9305=CARTESIAN_POINT($,(0.,0.4805,-5.0728));

 (
 #9307=CARTESIAN_POINT($,(0.0136,0.4803,-5.0728));

 (
 #9309=CARTESIAN_POINT($,(0.02,0.4801,-5.0728));

/* Tool Vectors (Orientation) */

(
#3707=ACTION_PROPERTY('tool axis','',#4470);

(
#1485=ACTION_PROPERTY_REPRESENTATION($,$,#3707,#2478);

(
#2478=REPRESENTATION($,(#3970),$);

(
#3970=POLYLINE('WS 3 TP 51',(#9306,#9308,#9310,#9312,#9314,#9316));

 (
 #9306=CARTESIAN_POINT($,(0.,0.2588,0.9659));

 (
 #9308=CARTESIAN_POINT($,(0.0073,0.2587,0.9659));

(
#9310=CARTESIAN_POINT($,(0.0108,0.2586,0.9659));

/* ARM */

/*

toolpath

trajectory

cutter_location_trajectory

basiccurve

bounded_curve

toolpath

trajectory

cutter_location_trajectory

its_toolaxis

basiccurve

bounded_curve

*/

#4470

machining_toolpath <=

action_method

{ action_method.description ‘cutter location trajectory’ }

/* The machining toolpath is defined as a cutter location trajectory, which means that the toolpath that is defined represents the path of the centerline of the cutter.

*/

#3706

action_property.definition

{ action_property.name = ‘basic curve’ }

/* The path of the centerline of the cutter is a bounded_curve. The attribute ‘definition’ points to the machining_toolpath

*/

#1484

action_property <-

action_property_representation.property

action_property_representation

action_property_representation.representation ->

representation

/* the action_property_representation links the action_property to its representation. The attribute ‘property’ points to the action_property. The attribute ‘representation’ points to the representation.

*/

#2477

representation.items[i]->

representation_item =>

geometric_representation_item

/* Allows a more general representation */

#3969

representation_item =>

geometric_representation_item =>

curve =>

bounded_curve

/* A polyline is a bounded curve, which is

a subtype of curve, which is

a subtype of a geometric_representation_item which is

a subtype of a representation_item.

10303-42 defines a polyline as a subtype of a bounded_curve

10303-42 defines a polyline as a list of Cartesian_point

*/

#9305, #9307, #9309

/* 10303-42 defines a Cartesian_point as list of points. In this context, the list is a length of three. Each of the three points in the list describe the X, Y, and Z axis positions, of the centerline of the cutter.

*/

#3707

action_property.definition

{ action_property.name = ‘tool axis’ }

/* The orientation of the cutter is defined as a bounded_curve of unit vectors. The attribute ‘definition’ points to the machining_toolpath

*/

#1485

action_property <-

action_property_representation.property

action_property_representation

action_property_representation.representation ->

representation

/* the action_property_representation links the action_property to its representation. The attribute ‘property’ points to the action_property. The attribute ‘representation’ points to the representation.

*/

#2478

representation.items[i]->

representation_item =>

geometric_representation_item

/* Allows a more general representation */

#3970

representation_item =>

geometric_representation_item =>

curve =>

bounded_curve

/* A polyline is a bounded curve, which is

a subtype of curve, which is

a subtype of a geometric_representation_item which is

a subtype of a representation_item.

10303-42 defines a polyline as a subtype of a bounded_curve

10303-42 defines a polyline as a list of Cartesian_point

In this case, the bounded curve represents the tool orientation as a series of unit vectors

*/

#9306, #9308, #9310

/* 10303-42 defines a Cartesian_point as list of points. In this context, the list is a length of three. Each of the three points in the list describe the i, j, and k tool orientation cosines of the cutter.

*/

Example 3: Feedrate for a toolpath

/* In AP238, there are many ways to define the feedrate for a tool path. Feedrates can be attached to a workingstep, toolpath, or expressed as a ratio of a base feedrate. Feedrates can be expressed as constants, polylines, or b-splines. In this example, the feedrate is expressed directly as a constant. It is attached to a toolpath.

*/

/* ARM */

/*

toolpath

its_technology

technology

feedrate

*/

#4230=MACHINING_TOOLPATH('WS 2 TP 1','cutter location trajectory','','');

(
#1510=MACHINING_TECHNOLOGY_RELATIONSHIP('technology',$,#4230,#4983);

(
#4983=MACHINING_TECHNOLOGY($,'milling',$,$);

(
#1=ACTION_PROPERTY('feedrate','',#4983);

(
#518=ACTION_PROPERTY_REPRESENTATION($,$,#1,#512);

(
#1512=MACHINING_FEED_SPEED_REPRESENTATION(‘feed speed’,(#20),$);

(
#20=MEASURE_REPRESENTATION_ITEM('feed speed',MEASURE_WITH_UNIT(50.),$);
#4230

/* A machining_toolpath is a subtype of an action_method *’

#1510

machining_toolpath <=

action_method <-

action_method_relationship.relating_method

action_method_relationship

{ action_method_relationship =>

machining_technology_relationship }

action_method_relationship.related_method –>

action_method =>

machining_technology

/* The relationship between a toolpath and its technology is established, with the relating_method attribute pointing to the toolpath and the related_method attribute pointing to the technology */

#1

machining_technology <=

action_method

characterized_action_definition = action_method

characterized_action_definition <-

action_property.definition

{ action_property.name = ‘feedrate’ }

/* We’re defining machining technology. The attribute characterized_action_definition points to the technology */

#518

action_property <-

action_property_representation.property

action_property_representation

action_property_representation.representation ->

{ representiation =>

machining_feed_speed_representation

representation

/* The relationship between the action_property and the representation is established */

#1512

{ representation.name ‘ ‘feed speed’ }

representation.items[i] ->

{ represention_item.name ‘ ‘feed speed’ }

representation_item =>

measure_representation_item <=

measure_with_unit

{ measure_with_unit_value_component ->

measure_value

#20

measure_value = numeric_measure

numeric_measure }

Example 4: Priority for a toolpath

#4230=MACHINING_TOOLPATH('WS 2 TP 1','cutter location trajectory','','');

(
#2508=ACTION_PROPERTY('priority','',#4230);

(
#519=ACTION_PROPERTY_REPRESENTATION($,$,#2508,#1512);

(
#1512=REPRESENTATION($,(#20),$);

(
#20=DESCRIPTIVE_REPRESENTATION_ITEM('WS 2 TP 2','required');

/* ARM */

toolpath

its_priority

boolean

/* AIM */

#4230

machining_toolpath <=

action_method

characterized_action_definition = action_method

/* An action method is being defined for the toolpath.

*/

#2508

characterized_action_definition <-

action_property.definition

{ action_property.name = ‘priority’ }

/* A toolpath priority is being established. Toolpath priorities are mostly irrelevant in CC1, since a description of the part features is not being transmitted. Toolpath priorities allow the programmer to chose whether a capable CNC is allowed to generate its own toolpaths or force it to accept the programmed toolpaths

The attribute ‘definition’ points to the relevant toolpath

*/

#519

action_property <-

action_property_representation.property

action_property_representation

action_property_representation.representation->

representation

/* The action_property is linked by the ‘property’ attribute.

The representation is linked by the ‘representation’ attribute.

*/

#1512

representation.items[i]->

/* The attribute ‘items’ points to the representation_item.

*/

#20

representation_item =>

descriptive_representation_item

descriptive_representation_item.description

{ (descriptive_representation_item.description = ‘required’)

(descriptive_representation_item.description = ‘suggested’)}

/* A descriptive_representation_item is a subtype of a representation_item

When the description is ‘required’, the explicitly defined toolpath must be followed.

When the description is ‘suggested’, the explicitly defined toolpath may be ignored.

*/

Example 5: Movement type for a toolpath

#4230=MACHINING_TOOLPATH('WS 2 TP 1','cutter location trajectory','','');

(
#2507=ACTION_PROPERTY('movement type','',#4230);

(
#518=ACTION_PROPERTY_REPRESENTATION($,$,#2507,#1511);

(
#1511=REPRESENTATION($,(#19),$);

(
#19=DESCRIPTIVE_REPRESENTATION_ITEM('WS 2 TP 2','trajectory path');

/* ARM */

toolpath

its_type

toolpath_type

#4230

machining_toolpath <=

action_method

characterized_action_definition = action_method

#2507

characterized_action_definition <-

action_property.definition

{ action_property.name = ‘movement type’ }

#518

action_property <-

action_property_representation.property

action_property_representation

action_property_representation.representation ->

representation

#1511

representation.items[i] ->

representation_item ->

descriptive_representation_item

#19

descriptive_representation_item.description

{ (descriptive_representation_item.description = ‘approach’)

(descriptive_representation_item.description = ‘lift’)

(descriptive_representation_item.description = ‘connect’)

(descriptive_representation_item.description = ‘non-contact’)

(descriptive_representation_item.description = ‘contact’)

(descriptive_representation_item.description = ‘trajectory path’) }

Example 6: Relationship of toolpaths to workingstep

#4973=FREEFORM_MILLING_OPERATION('Workingstep 2',$,$,$);

 (
 #4727= MACHINING_TOOLPATH_SEQUENCE_RELATIONSHIP ('',$,#4973,#4229,0.);

 (
 #4229=MACHINING_TOOLPATH('WS 2 TP 0','cutter location trajectory','','');

 (
 #4728= MACHINING_TOOLPATH_SEQUENCE_RELATIONSHIP ('',$,#4973,#4230,1.);

 (
 #4230=MACHINING_TOOLPATH('WS 2 TP 1','cutter location trajectory','','');

 (
 #4729= MACHINING_TOOLPATH_SEQUENCE_RELATIONSHIP ('',$,#4973,#4231,2.);

(
 #4231=MACHINING_TOOLPATH('WS 2 TP 2','cutter location trajectory','','');

#4973

#4229, #4230, #4231

/* The toolpaths */

/* ARM */

operation

its_toolpath

toolpath_list

its_list

toolpath

Example 7: Relationship of spindle speed to workingstep

#4973=FREEFORM_MILLING_OPERATION('Workingstep 2',$,$,$);

(
#4981=MACHINING_TECHNOLOGY_RELATIONSHIP ('',$,#4973,#4475);

(
#4475=MACHINING_TECHNOLOGY($,'milling',$,$);

(
#2498=ACTION_PROPERTY('spindle',$,#4475);

(
#511=ACTION_PROPERTY_REPRESENTATION($,$,#2498,#1504);

(
#1504=MACHINING_SPINDLE_SPEED_REPRESENTATION('spindle speed',(#3979),$);

(
#3979=MEASURE_REPRESENTATION_ITEM('rotational speed',NUMERIC_MEASURE(3600.),

$);

#4981

#4475

machining_technology <=

action_method

characterized_action_definition=action_method

#2498

characterized_action_definition <-

action_property.definition

{ action_property.name = ‘spindle’ }

#511

action_property <-

action_property_representation.property

action_property_representation

action_property_representation.representation ->

{ representation =>

machining_spindle_speed_representation }

#1504

machinining_spindle_speed_representation

{ representation.name = ‘spindle speed’ }

representation_items[i] ->

#3979

{ representation_item.name = ‘rotational speed’ }

representation_item =>

measure_representation_item <=

measure_with_unit

{ measure_with_unit.value_component ->

measure_value

measure_value = numeric_measure

numeric_measure }

measure

Example 8: Relationship of coolant to workingstep

#4973=FREEFORM_MILLING_OPERATION('Workingstep 2',$,$,$);

(
#4980=MACHINING_FUNCTIONS_RELATIONSHIP('machine functions',$,#4973,#4722);

(
#4722=MACHINING_FUNCTIONS($,'milling',$,$);

(
#2497=ACTION_PROPERTY('coolant',$,#4722);

(
#510=ACTION_PROPERTY_REPRESENTATION($,$,#2497,#1503);

(
#1503=REPRESENTATION('coolant',(#16),$);

(
#16=DESCRIPTIVE_REPRESENTATION_ITEM($,'coolant on');

/* ARM */

executable

workingstep

machining_workingstep

its_operation

machining_operation

its_machine_functions

milling_machine_functions

coolant

#4973

freeform_milling_operation <=

milling_type_operation <=

machining_operation

#4980

machining_operation <=

action_method <-

action_method_relationship.relating_method

action_method_relationship

{ action_method_relationship =>

machining_functions_relationship }

action_method_relationship.related_method ->

action_method =>

machining_functions

#4722

machining_functions <=

action_method

{ action_method.description = ‘milling’ }

machining_functions <=

action_method

characterized_action_definition = action_method

#2497

characterized_action_definition <-

action_property.definition

{ action_property.name = ‘coolant’ }

#510

action_property <-

action_property_representation.property

action_property_representation

action_property_representation.representation ->

representation

#1503

representation.items[i] ->

representation_item =>

descriptive_representation_item

#16

descriptive_representation_item.description

{ (descriptive_representation_item.description.description = ‘coolant on’)

(descriptive_representation_item.description = ‘coolant off’) }

Example 9: Relationship of tool to workingstep

#4973=FREEFORM_MILLING_OPERATION('Workingstep 2',$,$,$);

(
#12=MACHINING_TOOL('3',$,(#4973),#10);

(
#10=ACTION_RESOURCE_TYPE('cutting tool');

Example 10: Relationship of workplan to workingstep

#5233=MACHINING_WORKPLAN('WRKPLAN-01',$,$,$);

(
#4726= MACHINING_PROCESS_SEQUENCE_RELATIONSHIP ('Workingstep 2',$,#5233,#5230,0.);

(
#5230=MACHINING_WORKINGSTEP($,$,$,$);

(
#4979=MACHINING_OPERATION_RELATIONSHIP ('',$,#5230,#4973);

(
#4973=FREEFORM_MILLING_OPERATION('Workingstep 2',$,$,$);

/* ARM */

Example 11: Root relationship

#5240=APPLICATION_CONTEXT(

'Application protocol for the exchange of CNC data');

(
#5239=PRODUCT_CONTEXT($,#5240,$);

(
#5237=MACHINING_PROJECT($,$,$,(#5239));

(
#5236=PRODUCT_DEFINITION_FORMATION($,$,#5237);

(
#5235=PRODUCT_DEFINITION($,$,#5236,$);

(
#5234=PROCESS_PRODUCT_ASSOCIATION($,$,#5235,#5232);

(
#5232=PRODUCT_DEFINITION_PROCESS('machining','',#5233,'');

(
#5233=MACHINING_WORKPLAN('WRKPLAN-01',$,$,$);

/* ARM */

project

project_to_workplan (as main_workplan)

#5235

product_definition_formation <-

product_definition.formation

product_definition

characterized_product_definition = product_definition

#5234

characterized_product_definition <-

process_product_association.defined_product

process_product_association

process_product_association.process ->

process_definition_process =>

action

#5232

{ action.name = ‘machining’ }

action.chosen_method ->

action_method =>

machining_process_executable =>

machining_workplan

