

STEP-NC Status

Martin Hardwick David Loffredo info@steptools.com

STEP-NC Manufacturing Center

Watervliet Arsenal, Building 20 Metal Processing Manufacturing Division Watervliet, New York 12189 (518) 266-6212 / (518) 266-6211 fax http://www.stepnc.com

• STEP-NC AP-238 is a new language for CNC control

- Complete, unambiguous model of the part and process
- Upward compatible extension of AP-203 (geometry) and AP-224 (features)
- Makes CNC systems
 - » More interoperable
 - » Faster to program
 - » Safer to operate

• STEP-NC AP-238 can enable many savings in lean, agile manufacturing

AP-238 integrates tool path and design data

"Faster milling, drilling and turning"

CATIA, Unigraphics, Pro/Engineer, other APT-CL data sources GE Fanuc 16i, Siemens 840D, MDSI, other Open controls

Replace RS274D axis data with AP-238 tool path and design data

Reduce overhead

- More frequent direct load of customer data into CNC
- Faster set-up, less programming

Less waste

- Detect wrong program and workpiece
- Detect collisions

Increase throughput

- Optimal use of the machine
- Faster reprogramming

Example cost savings (1)

Description	Quantity	Annual Savings
Machined parts in the UK Navy inventory	90,000 (approx)	\$640M
Parts in one depot (submarine)	25,539	
Parts with available design data.	13,748	STEP-NC Opportunity
Savings using AP-224 for rapid manufacture	1,500	\$4M

Reduction of overhead (parts need less programming)						
	CAM programmer hours	2000	\$	80.00		
					\$	160,000.00
Less waste (0.5% error rate=3 parts per month)						
	Scrapped parts	36	\$	750.00		
	Scrapped cutting tools	36	\$	250.00		
	Lost machining hours	576	\$	100.00		
	Repair time (2 people)	1152	\$	50.00		
					\$	151,200.00
Faster thruput (12,000 hour base)						
	20% Increased utilization	2400	\$	100.00		
					\$	240,000.00
			TOTAL		\$	551,200.00
Example data for a machine shop in aerospace						
Three high speed machines. Two eight hour shifts.						
Machine 7,200 parts per year. 150 new parts per year.						

AP-238 Timeline

Date	Milestones.
1999	Project funded by NIST ATP Program
2001	Committee Draft of standard with milling model.
	First industry tests at General Dynamics Land Systems
2002	First industry benchmark tests at NASA JPL
2003	First release of ST-Plan (AP-203 to AP-238) conversion.
	First release of ST-Machine for GibbsCAM and Mastercam.
	First release of the STIX programming libraries.
	STEP-NC wins Industry Week "Technology of Year" award
2004	NGSS and BIW demonstrate application of STEP-NC to shipyard data
	Boeing demonstrates conversion of APT CL files to AP-238.
	STEP GD&T data for CAD, CNC and CMM harmonized
	Draft International Standard released for milling and turning
2005	Extensive industry testing
	Final Draft International Standard released
	CAD, CAM and CNC vendors announce support for AP-238
2006	International Standard released by ISO
	CAD, CAM and CNC vendors release products with AP-238 interfaces

• CC1 – CNC Independent tool paths

- Tool path data
- Workingstep infrastructure necessary to support tool paths

• CC2 – Collision detection

- AP-203 design geometry
- Tool and fixture information necessary to detect collisions

• CC3 – Conditional Programming

- Conditional and parallel programming constructs
- In-process feature data sufficient to constrain ordering

• CC4 – Generative programming

- GD&T data sufficient to compute optimal speeds and feeds
- Final feature data sufficient to compute tool paths

Questions? (Plug for Lean Manufacture Workshop in Seattle on October 6th)